21,363 research outputs found

    Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field

    Full text link
    We report the first experimental observation of a characteristic nonlinear threshold behavior from dc dynamical response as an evidence for a Wigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. However, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to a quantum process

    Multiquantum well structure with an average electron mobility of 4.0×10^6 cm^2/V s

    Get PDF
    We report a modulation-doped multiquantum well structure which suppresses the usual ambient light effect associated with modulation doping. Ten GaAs quantum wells 300-Å wide are symmetrically modulation doped using Si δ doping at the center of 3600-Å-wide Al0.1Ga0.9As barriers. The low field mobility of each well is 4.0×10^6 cm/V s at a density of 6.4×10^10 cm^−2 measured at 0.3 K either in the dark, or during, or after, exposure to light. This mobility is an order of magnitude improvement over previous work on multiwells

    Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States

    Full text link
    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields BcB_{c} is a function of a single scaling argument ∣B−Bc∣T−κ|B-B_{c}|T^{-\kappa}, where the exponent κ=0.42\kappa = 0.42. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure

    Probing the Melting of a Two-dimensional Quantum Wigner Crystal via its Screening Efficiency

    Full text link
    One of the most fundamental and yet elusive collective phases of an interacting electron system is the quantum Wigner crystal (WC), an ordered array of electrons expected to form when the electrons' Coulomb repulsion energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional (2D) electron systems, the quantum WC is known to be favored at very low temperatures (TT) and small Landau level filling factors (ν\nu), near the termination of the fractional quantum Hall states. This WC phase exhibits an insulating behavior, reflecting its pinning by the small but finite disorder potential. An experimental determination of a TT vs ν\nu phase diagram for the melting of the WC, however, has proved to be challenging. Here we use capacitance measurements to probe the 2D WC through its effective screening as a function of TT and ν\nu. We find that, as expected, the screening efficiency of the pinned WC is very poor at very low TT and improves at higher TT once the WC melts. Surprisingly, however, rather than monotonically changing with increasing TT, the screening efficiency shows a well-defined maximum at a TT which is close to the previously-reported melting temperature of the WC. Our experimental results suggest a new method to map out a TT vs ν\nu phase diagram of the magnetic-field-induced WC precisely.Comment: The formal version is published on Phys. Rev. Lett. 122, 116601 (2019

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1−x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1−x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1−x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking
    • …
    corecore