1,660 research outputs found
Analytical model of brittle destruction based on hypothesis of scale similarity
The size distribution of dust particles in nuclear fusion devices is close to
the power function. A function of this kind can be the result of brittle
destruction. From the similarity assumption it follows that the size
distribution obeys the power law with the exponent between -4 and -1. The model
of destruction has much in common with the fractal theory. The power exponent
can be expressed in terms of the fractal dimension. Reasonable assumptions on
the shape of fragments concretize the power exponent, and vice versa possible
destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
Deterministic Ultracold Ion Source targeting the Heisenberg Limit
The major challenges to fabricate quantum processors and future nano solid
state devices are material modification techniques with nanometre resolution
and suppression of statistical fluctuations of dopants or qubit carriers. Based
on a segmented ion trap with mK laser cooled ions we have realized a
deterministic single ion source which could operate with a huge range of
sympathetically cooled ion species, isotopes or ionic molecules. We have
deterministically extracted a predetermined number of ions on demand and have
measured a longitudinal velocity uncertainty of 6.3m/s and a spatial beam
divergence of 0.6 mrad. We show in numerical simulations that if the ions are
cooled to the motional ground state (Heisenberg limit) nanometre spatial
resolution can be achieved.Comment: 4 pages 4 figures. to be published in pr
Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices
The study of electron motion in semiconductor billiards has elucidated our
understanding of quantum interference and quantum chaos. The central assumption
is that ionized donors generate only minor perturbations to the electron
trajectories, which are determined by scattering from billiard walls. We use
magnetoconductance fluctuations as a probe of the quantum interference and show
that these fluctuations change radically when the scattering landscape is
modified by thermally-induced charge displacement between donor sites. Our
results challenge the accepted understanding of quantum interference effects in
nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
Conformation-regulated mechanosensory control via titin domains in cardiac muscle
The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains
Simple Viscous Flows: from Boundary Layers to the Renormalization Group
The seemingly simple problem of determining the drag on a body moving through
a very viscous fluid has, for over 150 years, been a source of theoretical
confusion, mathematical paradoxes, and experimental artifacts, primarily
arising from the complex boundary layer structure of the flow near the body and
at infinity. We review the extensive experimental and theoretical literature on
this problem, with special emphasis on the logical relationship between
different approaches. The survey begins with the developments of matched
asymptotic expansions, and concludes with a discussion of perturbative
renormalization group techniques, adapted from quantum field theory to
differential equations. The renormalization group calculations lead to a new
prediction for the drag coefficient, one which can both reproduce and surpass
the results of matched asymptotics
Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?
Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive
Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA
The homogeneous freezing of supercooled H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1 µm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.9 and 0.95. Cloud cooling rates up to -2.8 K min<sup>-1</sup> were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications
Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects
Using the helicity method we derive complete formulas for the joint angular
decay distributions occurring in semileptonic hyperon decays including lepton
mass and polarization effects. Compared to the traditional covariant
calculation the helicity method allows one to organize the calculation of the
angular decay distributions in a very compact and efficient way. In the
helicity method the angular analysis is of cascade type, i.e. each decay in the
decay chain is analyzed in the respective rest system of that particle. Such an
approach is ideally suited as input for a Monte Carlo event generation program.
As a specific example we take the decay () followed by the nonleptonic decay for which we show a few examples of decay distributions which are
generated from a Monte Carlo program based on the formulas presented in this
paper. All the results of this paper are also applicable to the semileptonic
and nonleptonic decays of ground state charm and bottom baryons, and to the
decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos
corrected, comments added, references added and update
MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4
Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
- …