7,038 research outputs found

    Rotational Perturbations of Friedmann-Robertson-Walker Type Brane-World Cosmological Models

    Get PDF
    First order rotational perturbations of the Friedmann-Robertson-Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.Comment: 14 pages, 5 figures, REVTEX

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    One-dimensional transport in polymer nanofibers

    Full text link
    We report our transport studies in quasi one-dimensional (1D) conductors - helical polyacetylene fibers doped with iodine and the data analysis for other polymer single fibers and tubes. We found that at 30 K < T < 300 K the conductance and the current-voltage characteristics follow the power law: G(T) ~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T) and I(V) show the features characteristic of 1D systems such as Luttinger liquid or Wigner crystal. The relationship between our results and theories for tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    ヒト前立腺癌の進行モデルと新しい治療法

    Get PDF
    著者等はヒト前立腺癌の進展に関した2つの細胞モデルを開発した.LNCaP前立腺癌進展モデルは, 生体内での前立腺又は骨の間質細胞とLNCaP細胞との相互作用に基づいており, これによって腫瘍形成能と転移能を獲得したものである.派生株C4-2は去勢動物で容易に発育し, リンパ節, 精嚢腺, 骨に転移する.次のモデルARCaPは, 癌性腹水由来のヒト前立腺癌細胞で, アンドロゲン及びエストロゲンによって増殖を抑制され, 去勢下で腫瘍を形成した.ARCaPはアンドロゲン受容体及びPSAを低レベルで発現し, 同所移植によって肝, 腎, 骨等に高頻度で転移した.これらのモデルを用いて遺伝子治療の研究を行ったOur laboratory has developed two cellular models of human prostate cancer progression. The LNCaP prostate cancer progression model is based upon the well-known cellular interaction between human prostate or bone stromal cells and LNCaP cells in vivo. The marginally tumorigenic LNCaP cells acquired tumorigenic and metastatic potential upon cellular interaction with either prostate or bone fibroblasts. A subline termed C4-2 was observed to grow readily in castrated animals and acquired metastatic potential spreading from the primary tumor site to the lymph node, the seminal vesicles, and the axial skeleton, resulting in an intense osteoblastic reaction. The second model is ARCaP, where prostate cancer cells derived from the ascites fluid of a man with metastatic disease exhibited an Androgen- and estrogen-Repressed Prostate Cancer cell growth and tumor formation in either a hormone-deficient or a castrated environment. However, the growth of either the tumor cells in vitro or the tumors in vivo was suppressed by both estrogen and androgen. While the tumor cells expressed low levels of androgen receptor and prostate-specific antigen (PSA), they were highly metastatic when inoculated orthotopically. Distant metastases to a number of organs were detected, including the liver, lung, kidney, and bone. We have employed a human prostate cancer progression model as a system to study the efficacy of gene therapy. Results of the study show that whereas universal promoters, such as Cytomegalovirus (CMV) and Rous Sarcoma Virus (RSV) promoter-driven tumor suppressors (e.g. p53, p21, and p16), were effective in inhibiting prostate tumor growth, the advantages of driving the expression of therapeutic toxic genes using a tissue-specific promoter prostate-specific antigen (PSA) and a tumor--but not tissue-specific promoter, osteocalcin (OC), are preferred. In the case of the PSA promoter, we can achieve cell-kill in PSA-producing human prostate cancer cells. To circumvent the supporting role of bone stroma for prostate cancer epithelial growth, we have recently developed a novel concept where the expression of therapeutic toxic genes is driven by a tumor--but not a tissue-specific OC promoter. Osteocalcin-thymidine kinase (OC-TK) was found to efficiently eradicate the growth of osteosarcoma, prostate, and brain tumors both in vitro and in vivo. We observed that androgen-independent human prostate cancer cells lines expressed OC-TK at higher levels than androgen-dependent human prostate cancer cell lines. We have obtained data to suggest that Ad-OC-TK plus a pro-drug acyclovir (ACV) may be used as an effective therapy to treat prostate cancer bone metastasis in models where the growth of androgen-independent PC-3 and C4-2 tumors in the bone has occurred

    Two semi-Lagrangian fast methods for Hamilton-Jacobi-Bellman equations

    Full text link
    In this paper we apply the Fast Iterative Method (FIM) for solving general Hamilton-Jacobi-Bellman (HJB) equations and we compare the results with an accelerated version of the Fast Sweeping Method (FSM). We find that FIM can be indeed used to solve HJB equations with no relevant modifications with respect to the original algorithm proposed for the eikonal equation, and that it overcomes FSM in many cases. Observing the evolution of the active list of nodes for FIM, we recover another numerical validation of the arguments recently discussed in [Cacace et al., SISC 36 (2014), A570-A587] about the impossibility of creating local single-pass methods for HJB equations

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte
    corecore