9,433 research outputs found
Materials technology advancement program for expandable manned space structures Final report
Composite materials tests for expandable manned space structures including flammability, micrometeoroid impact, thermal shock, and tear, puncture, and fungus resistanc
Materials technology advancement program for expandable manned space structures Summary report
Composite materials testing for fire resistant wall structures for expandable manned space structure
Ultrasonic detection of flaws in fusion butt welds
Reliable and accurate Delta technique, a nondestructive ultrasonics method, uses redirection of energy to detect randomly oriented imperfections in fusion butt welds. Data on flaws can be read from either an oscilloscope or a printout
Studies of surface two-dimensional photonic band-gap structures
Two-dimensional (2D) surface photonic band-gap (SPBG) structures can be obtained by providing a shallow corrugation of the inner surface of a waveguide wall. It can be used as a distributed mirror, a cavity, or a filter in integrated optics or microwave electronics. These structures can also be an alternative to conventional 2D PBG or 1D Bragg structures. In this article, we present the results of theoretical and experimental studies of 2D SPBG structures. Data obtained from experiments are compared with theoretical results and good agreement between theory and experiment is demonstrated. Comparison of a coaxial 2D SPBG structure with a conventional 1D Bragg structure is also presented
Domain Coarsening in Systems Far from Equilibrium
The growth of domains of stripes evolving from random initial conditions is
studied in numerical simulations of models of systems far from equilibrium such
as Rayleigh-Benard convection. The scaling of the size of the domains deduced
from the inverse width of the Fourier spectrum is studied for both potential
and nonpotential models. The morphology of the domains and the defect
structures are however quite different in the two cases, and evidence is
presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende
Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide
A gyrotron backward wave oscillator (gyro-BWO) with a helically corrugated interaction waveguide demonstrated its potential as a powerful microwave source with high efficiency and a wide frequency tuning range. This letter presents the theory describing the dispersion properties of such a waveguide and the linear beam-wave interaction. Numerical simulation results using the PIC code MAGIC were found to be in excellent agreement with the output measured from a gyro-BWO experiment
Laboratory Tests of Gravitational Physics Using a Cryogenic Torsion Pendulum
Progress and plans are reported for a program of gravitational physics
experiments using cryogenic torsion pendula undergoing large amplitude
torsional oscillation. The program includes a UC Irvine project to measure the
gravitational constant G and joint UC Irvine - U. Washington projects to test
the gravitational inverse square law at a range of about 10 cm and to test the
weak equivalence principle.Comment: 17 pages, 11 figures, contribution to the 10th Marcel Grossman
Conference Proceedings (Rio de Janeiro, July 20 - 26, 2003) - changed wording
in first paragraph of section
Influence of the Dufour effect on convection in binary gas mixtures
Linear and nonlinear properties of convection in binary fluid layers heated
from below are investigated, in particular for gas parameters. A Galerkin
approximation for realistic boundary conditions that describes stationary and
oscillatory convection in the form of straight parallel rolls is used to
determine the influence of the Dufour effect on the bifurcation behaviour of
convective flow intensity, vertical heat current, and concentration mixing. The
Dufour--induced changes in the bifurcation topology and the existence regimes
of stationary and traveling wave convection are elucidated. To check the
validity of the Galerkin results we compare with finite--difference numerical
simulations of the full hydrodynamical field equations. Furthermore, we report
on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles
Mean flow and spiral defect chaos in Rayleigh-Benard convection
We describe a numerical procedure to construct a modified velocity field that
does not have any mean flow. Using this procedure, we present two results.
Firstly, we show that, in the absence of mean flow, spiral defect chaos
collapses to a stationary pattern comprising textures of stripes with angular
bends. The quenched patterns are characterized by mean wavenumbers that
approach those uniquely selected by focus-type singularities, which, in the
absence of mean flow, lie at the zig-zag instability boundary. The quenched
patterns also have larger correlation lengths and are comprised of rolls with
less curvature. Secondly, we describe how mean flow can contribute to the
commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of mean flow, rolls begin to terminate into
lateral walls at an oblique angle. This obliqueness increases with Rayleigh
number.Comment: 14 pages, 19 figure
- …