9,043 research outputs found
U-Spin Tests of the Standard Model and New Physics
Within the standard model, a relation involving branching ratios and direct
CP asymmetries holds for the B-decay pairs that are related by U-spin. The
violation of this relation indicates new physics (NP). In this paper, we assume
that the NP affects only the Delta S = 1 decays, and show that the NP operators
are generally the same as those appearing in B -> pi K decays. The fit to the
latest B -> pi K data shows that only one NP operator is sizeable. As a
consequence, the relation is expected to be violated for only one decay pair:
Bd -> K0 pi0 and Bs -> Kbar0 pi0.Comment: 12 pages, latex, no figures. References changed to follow MPL
guidelines; info added about U-spin breaking and small NP strong phases;
discussion added about final-state pi-K rescattering; analysis and
conclusions unaltere
Conflation of short identity-by-descent segments bias their inferred length distribution
Identity-by-descent (IBD) is a fundamental concept in genetics with many
applications. In a common definition, two haplotypes are said to contain an IBD
segment if they share a segment that is inherited from a recent shared common
ancestor without intervening recombination. Long IBD segments (> 1cM) can be
efficiently detected by a number of algorithms using high-density SNP array
data from a population sample. However, these approaches detect IBD based on
contiguous segments of identity-by-state, and such segments may exist due to
the conflation of smaller, nearby IBD segments. We quantified this effect using
coalescent simulations, finding that nearly 40% of inferred segments 1-2cM long
are results of conflations of two or more shorter segments, under demographic
scenarios typical for modern humans. This biases the inferred IBD segment
length distribution, and so can affect downstream inferences. We observed this
conflation effect universally across different IBD detection programs and human
demographic histories, and found inference of segments longer than 2cM to be
much more reliable (less than 5% conflation rate). As an example of how this
can negatively affect downstream analyses, we present and analyze a novel
estimator of the de novo mutation rate using IBD segments, and demonstrate that
the biased length distribution of the IBD segments due to conflation can lead
to inflated estimates if the conflation is not modeled. Understanding the
conflation effect in detail will make its correction in future methods more
tractable
Rotational Perturbations of Friedmann-Robertson-Walker Type Brane-World Cosmological Models
First order rotational perturbations of the Friedmann-Robertson-Walker metric
are considered in the framework of the brane-world cosmological models. A
rotation equation, relating the perturbations of the metric tensor to the
angular velocity of the matter on the brane is derived under the assumption of
slow rotation. The mathematical structure of the rotation equation imposes
strong restrictions on the temporal and spatial dependence of the brane matter
angular velocity. The study of the integrable cases of the rotation equation
leads to three distinct models, which are considered in detail. As a general
result we find that, similarly to the general relativistic case, the rotational
perturbations decay due to the expansion of the matter on the brane. One of the
obtained consistency conditions leads to a particular, purely inflationary
brane-world cosmological model, with the cosmological fluid obeying a
non-linear barotropic equation of state.Comment: 14 pages, 5 figures, REVTEX
Spin Information from Vector-Meson Decay in Photoproduction
For the photoproduction of vector mesons, all single and double spin
observables involving vector meson two-body decays are defined consistently in
the center of mass. These definitions yield a procedure for
extracting physically meaningful single and double spin observables that are
subject to known rules concerning their angle and energy evolution. As part of
this analysis, we show that measuring the two-meson decay of a photoproduced
or does not determine the vector meson's vector polarization, but
only its tensor polarization. The vector meson decay into lepton pairs is also
insensitive to the vector meson's vector polarization, unless one measures the
spin of one of the leptons. Similar results are found for all double spin
observables which involve observation of vector meson decay. To access the
vector meson's vector polarization, one therefore needs to either measure the
spin of the decay leptons, make an analysis of the background interference
effects or relate the vector meson's vector polarization to other accessible
spin observables.Comment: 22 pages, 3 figure
Zero differential resistance in two-dimensional electron systems at large filling factors
We report on a state characterized by a zero differential resistance observed
in very high Landau levels of a high-mobility two-dimensional electron system.
Emerging from a minimum of Hall field-induced resistance oscillations at low
temperatures, this state exists over a continuous range of magnetic fields
extending well below the onset of the Shubnikov-de Haas effect. The minimum
current required to support this state is largely independent on the magnetic
field, while the maximum current increases with the magnetic field tracing the
onset of inter-Landau level scattering
Our Parents, Ourselves: Health Care for an Aging Population; A Report of the Dartmouth Atlas Project
The new Dartmouth Atlas, funded by The John A. Hartford Foundation, is a report card that analyzes Medicare data to show us where the United States is making progress in patient-centered, evidence-based care for Medicare beneficiaries and where improvement is still needed. It also offers insight into regional variations in care.Filling in the gaps in our knowledge about the state of care across the country will help health care providers, health systems, and patients and families work together to improve care for all older adults.This Dartmouth Atlas report looks at a number of measures from Medicare data, including:The number of days older adults spend in contact with the health care system;Use of high-risk medications;Cancer screening rates (and how they compare with recommendations);30-day hospital readmission rates;Annual Wellness Visit (AWV) rates;Late hospice referral; andThe number of days spent in intensive care.The report also offers a historical look at key practices, comparing data from 2003-05 and 2012
Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis
In this work we perform theoretical analysis about a coupled RC circuit with
constant driven currents. Starting from stochastic differential equations,
where voltages are subject to thermal noises, we derive time-correlation
functions, steady-state distributions and transition probabilities of the
system. The validity of the fluctuation theorem (FT) is examined for scenarios
with complete and incomplete descriptions.Comment: 4 pages, 1 figur
Magnetotransport in a two-dimensional electron system in dc electric fields
We report on nonequilibrium transport measurements in a high-mobility
two-dimensional electron system subject to weak magnetic field and dc
excitation. Detailed study of dc-induced magneto-oscillations, first observed
by Yang {\em et al}., reveals a resonant condition that is qualitatively
different from that reported earlier. In addition, we observe dramatic
reduction of resistance induced by a weak dc field in the regime of separated
Landau levels. These results demonstrate similarity of transport phenomena in
dc-driven and microwave-driven systems and have important implications for
ongoing experimental search for predicted quenching of microwave-induced
zero-resistance states by a dc current.Comment: Revised version, to appear in Phys. Rev.
- …