1,759 research outputs found
Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions
Numerical solutions of the laminar Prandtl boundary-layer and Navier-Stokes
equations are considered for the case of the two-dimensional uniform flow past
an impulsively-started circular cylinder. We show how Prandtl's solution
develops a finite time separation singularity. On the other hand Navier-Stokes
solution is characterized by the presence of two kinds of viscous-inviscid
interactions that can be detected by the analysis of the enstrophy and of the
pressure gradient on the wall. Moreover we apply the complex singularity
tracking method to Prandtl and Navier-Stokes solutions and analyze the previous
interactions from a different perspective
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
In this paper we investigate the asymptotic validity of boundary layer
theory. For a flow induced by a periodic row of point-vortices, we compare
Prandtl's solution to Navier-Stokes solutions at different numbers. We
show how Prandtl's solution develops a finite time separation singularity. On
the other hand Navier-Stokes solution is characterized by the presence of two
kinds of viscous-inviscid interactions between the boundary layer and the outer
flow. These interactions can be detected by the analysis of the enstrophy and
of the pressure gradient on the wall. Moreover we apply the complex singularity
tracking method to Prandtl and Navier-Stokes solutions and analyze the previous
interactions from a different perspective
Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids Versus 2D Cell Cultures
Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O2, nutrients, and treatment agents. More importantly, 2D cultures lack cell–cell and cell–extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies. Magnetic 3D bioprinting (M3DB) can circumvent these issues by utilizing nanoparticles that enable spheroid formation and growth via magnetizing cells. M3DB spheroids have been shown to emulate tissue and tumor microenvironments while exhibiting higher resistance to toxic agents than their 2D counterparts. It is, however, unclear if and how such 3D systems impact cellular metabolic networks, which may determine altered toxic responses in cells. We employed a Stable Isotope-Resolved Metabolomics (SIRM) approach with 13C6-glucose as tracer to map central metabolic networks both in 2D cells and M3DB spheroids formed from lung (A549) and pancreatic (PANC1) adenocarcinoma cells without or with an anti-cancer agent (sodium selenite). We found that the extent of 13C-label incorporation into metabolites of glycolysis, the Krebs cycle, the pentose phosphate pathway, and purine/pyrimidine nucleotide synthesis was largely comparable between 2D and M3DB culture systems for both cell lines. The exceptions were the reduced capacity for de novo synthesis of pyrimidine and sugar nucleotides in M3DB than 2D cultures of A549 and PANC1 cells as well as the presence of gluconeogenic activity in M3DB spheroids of PANC1 cells but not in the 2D counterpart. More strikingly, selenite induced much less perturbation of these pathways in the spheroids relative to the 2D counterparts in both cell lines, which is consistent with the corresponding lesser effects on morphology and growth. Thus, the increased resistance of cancer cell spheroids to selenite may be linked to the reduced capacity of selenite to perturb these metabolic pathways necessary for growth and survival
The generalised NMSSM at one loop: fine tuning and phenomenology
We determine the degree of fine tuning needed in a generalised version of the
NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is
significantly less than is found in the MSSM or NMSSM and extends the range of
Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV.
For universal boundary conditions analogous to the CMSSM the phenomenology is
rather MSSM like with the singlet states typically rather heavy. For more
general boundary conditions the singlet states can be light, leading to
interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
NLL soft and Coulomb resummation for squark and gluino production at the LHC
We present predictions of the total cross sections for pair production of
squarks and gluinos at the LHC, including the stop-antistop production process.
Our calculation supplements full fixed-order NLO predictions with resummation
of threshold logarithms and Coulomb singularities at next-to-leading
logarithmic (NLL) accuracy, including bound-state effects. The numerical effect
of higher-order Coulomb terms can be as big or larger than that of soft-gluon
corrections. For a selection of benchmark points accessible with data from the
2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive
squark and gluino production cross section in the 15-30 % range. For individual
production processes of gluinos, the corrections can be much larger. The
theoretical uncertainty in the prediction of the hard-scattering cross sections
is typically reduced to the 10 % level.Comment: 45 pages, 16 Figures, LaTex. v2: published version. Grids with
numerical results for the NLL cross sections for squark and gluino production
at the 7/8 TeV LHC are included in the submission and are also available at
http://omnibus.uni-freiburg.de/~cs1010/susy.htm
Magnon Heat Transport in (Sr,La)_14Cu_24O_41
We have measured the thermal heat conductivity kappa of the compounds
Sr_14Cu_24O_41 and Ca_9La_5Cu_24O_41 containing doped and undoped spin ladders,
respectively. We find a huge anisotropy of both, the size and the temperature
dependence of kappa which we interpret in terms of a very large heat
conductivity due to the magnetic excitations of the one-dimensional spin
ladders. This magnon heat conductivity decreases with increasing hole doping of
the ladders. The magnon heat transport is analyzed theoretically using a simple
kinetic model. From this analysis we determine the spin gap and the temperature
dependent mean free path of the magnons which ranges by several thousand
angstroms at low temperature. The relevance of several scattering channels for
the magnon transport is discussed.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-
The first measurements of the coherence factor R_{K_S^0K\pi} and the average
strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm
decays are reported. These parameters can be used to improve the determination
of the unitary triangle angle \gamma\ in B^- \rightarrow
decays, where is either a D^0 or a D^0-bar meson decaying to
the same final state, and also in studies of charm mixing. The measurements of
the coherence factor and strong-phase difference are made using
quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^-
collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} =
0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7) for an
unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} =
(-16.6 \pm 18.4) for a region where the combined K_S^0 \pi^\pm
invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results
indicate a significant level of coherence in the decay. In addition, isobar
models are presented for the two decays, which show the dominance of the
K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow
K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm
0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous
measurements.Comment: 38 pages. Version 3 updated to include the erratum information.
Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and
external inputs updated to latest best known values. Typo corrected in Eq(3)-
no other consequence
Observation of the Dalitz Decay
Using 586 of collision data acquired at
GeV with the CLEO-c detector at the Cornell Electron Storage
Ring, we report the first observation of
with a significance of . The ratio of branching fractions
\calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+}
\gamma) is measured to be , which is consistent with theoretical expectations
- …