23,495 research outputs found
Fermi Surface of KFeAs from Quantum Oscillations in Magnetostriction
We present a study of the Fermi surface of KFeAs single crystals.
Quantum oscillations were observed in magnetostriction measured down to 50 mK
and in magnetic fields up to 14 T. For , the calculated
effective masses are in agreement with recent de Haas-van Alphen and ARPES
experiments, showing enhanced values with respect to the ones obtained from
previous band calculations. For , we observed a small orbit at a
cyclotron frequency of 64 T, characterized by an effective mass of , supporting the presence of a three-dimensional pocket at the Z-point.Comment: SCES Conference, Tokyo 201
Integrable quadratic Hamiltonians on so(4) and so(3,1)
We investigate a special class of quadratic Hamiltonians on so(4) and so(3,1)
and describe Hamiltonians that have additional polynomial integrals. One of the
main results is a new integrable case with an integral of sixth degree.Comment: 16 page
Evidence for multiple superconducting gaps in optimally doped BaFeCoAs from infrared spectroscopy
We performed combined infrared reflection and ellipsometry measurements of
the in-plane optical reponse of single crystals of the pnictide high
temperature superconductor BaFeCoAs with = 24.5
K. We observed characteristic superconductivity-induced changes which provide
evidence for at least three different energy gaps. We show that a BCS-model of
isotropic gaps with 2 of 3.1, 4.7, and 9.2 reproduces the
experimental data rather well. We also determine the low-temperature value of
the in-plane magnetic penetration depth of 270 nm
Ordinary Least Squares Estimation of the Intrahousehold Distribution of Expenditure
We provide a method to estimate resource shares—the fraction of total household expenditure allocated to each household member—using linear (e.g., ordinary least squares) estimation of Engel curves. The method is a linear reframing of the 2013 nonlinear model of Dunbar, Lewbel, and Pendakur, extended to allow single-parent and other complex households, scale economies in assignable goods, and complementarities between nonassignable goods and supplemented with a linear identification test. We apply the model to data from 12 countries and investigate resource shares, gender gaps, and poverty at the individual level. We reject equal sharing and find large gender gaps in resource shares, and consequently in poverty rates, in some countries
Universality of transport properties of ultra-thin oxide films
We report low-temperature measurements of current-voltage characteristics for
highly conductive Nb/Al-AlOx-Nb junctions with thicknesses of the Al interlayer
ranging from 40 to 150 nm and ultra-thin barriers formed by diffusive oxidation
of the Al surface. In the superconducting state these devices have revealed a
strong subgap current leakage. Analyzing Cooper-pair and quasiparticle currents
across the devices, we conclude that the strong suppression of the subgap
resistance comparing with conventional tunnel junctions originates from a
universal bimodal distribution of transparencies across the Al-oxide barrier
proposed earlier by Schep and Bauer. We suggest a simple physical explanation
of its source in the nanometer-thick oxide films relating it to strong local
barrier-height fluctuations which are generated by oxygen vacancies in thin
aluminum oxide tunnel barriers formed by thermal oxidation.Comment: revised text and a new figur
Importance of In-Plane Anisotropy in the Quasi Two-Dimensional Antiferromagnet BaNiVO
The phase diagram of the quasi two-dimensional antiferromagnet
BaNiVO is studied by specific heat, thermal expansion,
magnetostriction, and magnetization for magnetic fields applied perpendicular
to . At T, a crossover to a high-field state,
where increases linearly, arises from a competition of intrinsic and
field-induced in-plane anisotropies. The pressure dependences of and
are interpreted using the picture of a pressure-induced in-plane
anisotropy. Even at zero field and ambient pressure, in-plane anisotropy cannot
be neglected, which implies deviations from pure
Berezinskii-Kosterlitz-Thouless behavior.Comment: 4 pages, 4 figure
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites
We have conducted N-body simulations of the growth of Milky Way-sized halos
in cold and warm dark matter cosmologies. The number of dark matter satellites
in our simulated Milky Ways decreases with decreasing mass of the dark matter
particle. Assuming that the number of dark matter satellites exceeds or equals
the number of observed satellites of the Milky Way we derive lower limits on
the dark matter particle mass. We find with 95% confidence m_s > 13.3 keV for a
sterile neutrino produced by the Dodelson and Widrow mechanism, m_s > 8.9 keV
for the Shi and Fuller mechanism, m_s > 3.0 keV for the Higgs decay mechanism,
and m_{WDM} > 2.3 keV for a thermal dark matter particle. The recent discovery
of many new dark matter dominated satellites of the Milky Way in the Sloan
Digital Sky Survey allows us to set lower limits comparable to constraints from
the complementary methods of Lyman-alpha forest modeling and X-ray observations
of the unresolved cosmic X-ray background and of dark matter halos from dwarf
galaxy to cluster scales. Future surveys like LSST, DES, PanSTARRS, and
SkyMapper have the potential to discover many more satellites and further
improve constraints on the dark matter particle mass.Comment: 17 pages, 13 figures, replaced with final version published in
Physical Review
- …