189 research outputs found

    Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal

    Get PDF
    Mast cell neoplasms are one of the most frequently diagnosed malignancies in dogs. The clinical picture, course, and prognosis vary substantially among patients, depending on the anatomic site, grade and stage of the disease. The most frequently involved organ is the skin, followed by hematopoietic organs (lymph nodes, spleen, liver, and bone marrow) and mucosal sites of the oral cavity and the gastrointestinal tract. In cutaneous mast cell tumors, several grading and staging systems have been introduced. However, no comprehensive classification and no widely accepted diagnostic criteria have been proposed to date. To address these open issues and points we organized a Working Conference on canine mast cell neoplasms in Vienna in 2019. The outcomes of this meeting are summarized in this article. The proposed classification includes cutaneous mast cell tumors and their sub-variants defined by grading- and staging results, mucosal mast cell tumors, extracutaneous/extramucosal mast cell tumors without skin involvement, and mast cell leukemia (MCL). For each of these entities, diagnostic criteria are proposed. Moreover, we have refined grading and staging criteria for mast cell neoplasms in dogs based on consensus discussion. The criteria and classification proposed in this article should greatly facilitate diagnostic evaluation and prognostication in dogs with mast cell neoplasms and should thereby support management of these patients in daily practice and the conduct of clinical trials

    The unexpectedly short Holocene Humid Period in Northern Arabia

    Get PDF
    The early to middle Holocene Humid Period led to a greening of today's arid Saharo-Arabian desert belt. While this phase is well defined in North Africa and the Southern Arabian Peninsula, robust evidence from Northern Arabia is lacking. Here we fill this gap with unprecedented annually to sub-decadally resolved proxy data from Tayma, the only known varved lake sediments in Northern Arabia. Based on stable isotopes, micro-facies analyses and varve and radiocarbon dating, we distinguish five phases of lake development and show that the wet phase in Northern Arabia from 8800-7900 years BP is considerably shorter than the commonly defined Holocene Humid Period (similar to 11,000-5500 years BP). Moreover, we find a two century-long peak humidity at times when a centennial-scale dry anomaly around 8200 years BP interrupted the Holocene Humid Period in adjacent regions. The short humid phase possibly favoured Neolithic migrations into Northern Arabia representing a strong human response to environmental changes

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions

    Get PDF
    AbstractThe nuclear factor CREB activates transcription of target genes in part through direct interactions with the KIX domain of the coactivator CBP in a phosphorylation-dependent manner. The solution structure of the complex formed by the phosphorylated kinase-inducible domain (pKID) of CREB with KIX reveals that pKID undergoes a coil→helix folding transition upon binding to KIX, forming two α helices. The amphipathic helix αB of pKID interacts with a hydrophobic groove defined by helices α1 and α3 of KIX. The other pKID helix, αA, contacts a different face of the α3 helix. The phosphate group of the critical phosphoserine residue of pKID forms a hydrogen bond to the side chain of Tyr-658 of KIX. The structure provides a model for interactions between other transactivation domains and their targets

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Get PDF

    Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Get PDF
    [EN] Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to- shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystemsThe authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a lenergie atomique et aux energies alternatives (CEA), la Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO), Prometeo and Grisolia programs of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilitiesAndre, M.; Caballé, A.; Van Der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sanchez, AM.... (2017). Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Scientific Reports. 7:1-12. https://doi.org/10.1038/srep45517S1127Aguilar, J. A. et al. ANTARES: the first undersea neutrino telescope. Nucl Inst and Met Phys Res A. 656, 11–38 (2011a).Aguilar, J. A. et al. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope -. Nucl Inst and Met Phys Res A. 626–627, 128–143 (2011b).Ruhl, H. et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Prog Oceanog. 91, 1–33 (2011).Tamburini, C. et al. Deep-sea bioluminescence blooms after dense water formation at the ocean surface. PLoS One. 8(7), e67523. doi: 10.1371/journal.pone.0067523 (2013).Van Haren, H. et al. Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean. Deep Sea Res I. 58, 875–884 (2011).Van der Graaf, A. J. et al. European Marine Strategy Framework Directive - Good Environmental Status (MSFD GES): Report of the Technical Subgroup on Underwater noise and other forms of energy (2012).Hatch, L. T., Clark, C. W., Van Parijs, S. M., Frankel, A. S. & Ponirakis, D. W. Quantifying Loss of Acoustic Communication Space for Right Whales in and around a U.S. National Marine Sanctuary. Conserv Biol. 26, 983–994 (2012).André, M. et al. Low-frequency sounds induce acoustic trauma in cephalopods. Front. Ecol. Environ. 9, 489–493 (2011).Solé, M. et al. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep Sea Res. II. 95, 160–181 (2013).Solé, M. et al. Ultrastructural damage of Loligo vulgaris and Illex coindetii statocysts after low frequency sound exposure. PLoS One 8(10), e78825. doi: 10.1371/journal.pone.0078825 (2013).André, M. et al. Listening to the Deep: Live monitoring of ocean noise and cetacean acoustic signals. Mar Pollut Bull. 63, 18–26 (2011).Whitehead, H. Sperm whales: social evolution in the ocean(The University of Chicago Press, Chicaho, 2003).Mohl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A. & Lund, A. The monopulsed nature of sperm whale clicks. J Acous Soc Am. 114, 1143–1154 (2003).André, M., Johansson, T., Delory, E. & van der Schaar, M. Foraging on squid: the sperm whale mid-range sonar. Jour Mar Biol Assoc. 87, 59–67 (2007).Madsen, P., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication. Behav Ecol Sociobiol. 53, 31, doi: 10.1007/s00265-002-0548-1 (2002).Gannier, A., Drouot, V. & Goold, J. C. Distribution and relative abundance of sperm whales in the Mediterranean Sea . Mar Ecol Prog Ser. 243, 281–293 (2000).Drouot, V., Gannier, A. & Gould, J. C. Summer social distribution of sperm whales in the Mediterranean Sea. J Mar Biol Ass. 84, 675–680 (2004).Pavan, G. et al. G. Short Term and Long Term Bioacoustic Monitoring of the Marine Environment. Results from NEMO ONDE Experiment and Way Ahead in Computational bioacoustics for assessing biodiversity . Proceedings of the International Expert meeting on IT-based detection of bioacoustical patterns(ed. Frommolt, K. H., Rolf Bardeli, R. & Clausen, M. ) 7–14 (Federal Agency for Nature Conservation, Bonn, 2008).Frantzis, A. et al. Sperm whale presence off South-West Crete, Eastern Mediterranean Sea in Proc. 13th Ann. Conf. ECS. 214–217 (Eur Res Cet, Valencia, 1999).Notarbartolo-Di-Sciara, G. Sperm whales, Physeter macrocephalus, in the Mediterranean Sea: a summary of status, threats, and conservation recommendations. Aquatic Conserv. Mar. Freshw. Ecosyst. 24, 4–10. doi: 10.1002/aqc.2409 (2014).Pace, D. S., Mussi, B., Gordon, J. C. D. & Würtz, M. Ecology, Behaviour and Conservation of Sperm Whale in the Mediterranean Sea in Aquatic Conserv . Mar. Freshw. Ecosyst. 24 (ed. Wiley, J. ) 1–118 (Wiley Online library, 2014).Rendell, L. E. & Frantzis, A. Mediterranean sperm whales, Physeter macrocephalus: the precarious state of a lost tribe In Medit. Mar. Mam. Ecol. Cons. 75 (ed. Notarbartolo di Sciara, G., Podestà, M. P. & Curry, B. E. ) 37–74, doi: 10.1016/bs.amb.2016.08.001 (Advances in Marine Biology, Academic Press/Elsevier, 2016).Di Natale, A. & Notarbartolo di Sciara, G. A review of the passive fishing nets and trap fisheries in the Mediterranean Sea and of the cetacean bycatch In Gillnets and cetaceans(ed. Perrin, W. F., Donovan, G. P. & Barlow, J. ) 189–202 (Rep Int Whal Comm, 1994).Jaquet, N., Whitehead, H. & Lewis, M. Relationship between sperm whale distribution and primary productivity over large spatial scale in the Pacific ocean. Eur Res Cet. 9, 188–192 (1995).Millot, C. Circulation in the Western Mediterranean Sea. Oceanol Acta. 10, 143–150 (1987).Morel, A. & André, J. M. Pigment distribution and primary production in the Western Mediterranean as derived from coastal zone color scanner observations. J Geophy Res. 96, 2685–12698 (1991).Crépon, M., Wald, L. & Monget, J. M. Low-frequency waves in the Ligurian Sea during December 1977. J Geophys Res. 87, 595–600 (1982).Prieur, L. & Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol Oceanogr. 26, 671–89 (1981).Kawakami, T. A review of sperm whale food. Sci Rep Whales Res Inst. 32, 199–218 (1980).Roper, C. F. E. & Young, R. E. Vertical distribution of pelagic cephalopods. Smithson Contrib Zool. 209, 1–51 (1975).Matsushita, T. Daily rhythmic activity of the sperm whales in the Antarctic. Bull Jpn Soc Sci Fish. 20, 770–73 (1955).Zaugg, S. et al. Real-time acoustic classification of sperm whale clicks and shipping impulses from deep-sea observatories. Appl Acoust. 71(11), 1011–1019 (2010).Nelder, J. & Wedderburn, R. Generalized linear models. J R Stat Soc. 135, 370–384 (1972)
    corecore