14,839 research outputs found

    All Coronal Loops are the Same: Evidence to the Contrary

    Full text link
    The 1998 April 20 spectral line data from the Coronal Diagnostics Spectrometer (CDS) on the {\it Solar and Heliospheric Observatory} (\SOHO) shows a coronal loop on the solar limb. Our original analysis of these data showed that the plasma was multi-thermal, both along the length of the loop and along the line of sight. However, more recent results by other authors indicate that background subtraction might change these conclusions, so we consider the effect of background subtraction on our analysis. We show Emission Measure (EM) Loci plots of three representative pixels: loop apex, upper leg, and lower leg. Comparisons of the original and background-subtracted intensities show that the EM Loci are more tightly clustered after background subtraction, but that the plasma is still not well represented by an isothermal model. Our results taken together with those of other authors indicate that a variety of temperature structures may be present within loops.Comment: Accepted for publication in ApJ Letter

    The Reaction Process A+A->O in Sinai Disorder

    Full text link
    The single-species reaction-diffusion process A+A→OA+A\to O is examined in the presence of an uncorrelated, quenched random velocity field. Utilising a field-theoretic approach, we find that in two dimensions and below the density decay is altered from the case of purely diffusing reactants. In two-dimensions the density amplitude is reduced in the presence of weak disorder, yielding the interesting result that Sinai disorder can cause reactions to occur at an {\it increased} rate. This is in contrast to the case of long-range correlated disorder, where it was shown that the reaction becomes sub-diffusion limited. However, when written in terms of the microscopic diffusion constant it is seen that increasing the disorder has the effect of reducing the rate of the reaction. Below two dimensions, the effect of Sinai disorder is much more severe and the reaction is shown to become sub-diffusion limited. Although there is no universal amplitude for the time-dependence of the density, it is universal when expressed in terms of the disorder-averaged diffusion length. The appropriate amplitude is calculated to one-loop order.Comment: 12 pages, 2 figure

    Universality in Turbulence: an Exactly Soluble Model

    Full text link
    The present note contains the text of lectures discussing the problem of universality in fully developed turbulence. After a brief description of Kolmogorov's 1941 scaling theory of turbulence and a comparison between the statistical approach to turbulence and field theory, we discuss a simple model of turbulent advection which is exactly soluble but whose exact solution is still difficult to analyze. The model exhibits a restricted universality. Its correlation functions contain terms with universal but anomalous scaling but with non-universal amplitudes typically diverging with the growing size of the system. Strict universality applies only after such terms have been removed leaving renormalized correlators with normal scaling. We expect that the necessity of such an infrared renormalization is a characteristic feature of universality in turbulence.Comment: 31 pages, late

    On the exactly solvable pairing models for bosons

    Full text link
    We propose the new exactly solvable model for bosons corresponding to the attractive pairing interaction. Using the electrostatic analogy, the solution of this model in thermodynamic limit is found. The transition from the superfluid phase with the Bose condensate and the Bogoliubov - type spectrum of excitations in the weak coupling regime to the incompressible phase with the gap in the excitation spectrum in the strong coupling regime is observed.Comment: 19 page

    Exact correlation functions of the BCS model in the canonical ensemble

    Full text link
    We evaluate correlation functions of the BCS model for finite number of particles. The integrability of the Hamiltonian relates it with the Gaudin algebra G[sl(2)]{\cal G}[sl(2)]. Therefore, a theorem that Sklyanin proved for the Gaudin model, can be applied. Several diagonal and off-diagonal correlators are calculated. The finite size scaling behavior of the pairing correlation function is studied.Comment: 4 pages revtex; 2 figures .eps. Revised version to be published in Phys. Rev. Let

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Blobs in Wolf-Rayet Winds: Random Photometric and Polarimetric Variability

    Full text link
    Some isolated Wolf-Rayet stars present random variability in their optical flux and polarization. We make the assumption that such variability is caused by the presence of regions of enhanced density, i.e. blobs, in their envelopes. In order to find the physical characteristics of such regions we have modeled the stellar emission using a Monte Carlo code to treat the radiative transfer in an inhomogeneous electron scattering envelope. We are able to treat multiple scattering in the regions of enhanced density as well as in the envelope itself. The finite sizes of the source and structures in the wind are also taken into account. Most of the results presented here are based on a parameter study of models with a single blob. The effects due to multiple blobs in the envelope are considered to a more limited extent. Our simulations indicate that the density enhancements must have a large geometric cross section in order to produce the observed photopolarimetric variability. The sizes must be of the order of one stellar radius and the blobs must be located near the base of the envelope. These sizes are the same inferred from the widths of the sub-peaks in optical emission lines of Wolf-Rayet stars. Other early-type stars show random polarimetric fluctuations with characteristics similar to those observed in Wolf-Rayet stars, which may also be interpreted in terms of a clumpy wind. Although the origin of such structures is still unclear, the same mechanism may be working in different types of hot stars envelopes to produce such inhomogeneities.Comment: Accepted to ApJ. 17 pages + 6 figure

    Transport and Boundary Scattering in Confined Geometries: Analytical Results

    Full text link
    We utilize a geometric argument to determine the effects of boundary scattering on the carrier mean-free path in samples of various cross sections. Analytic expressions for samples with rectangular and circular cross sections are obtained. We also outline a method for incorporating these results into calculations of the thermal conductivity.Comment: 35 pages, Late

    Leptonic constants of heavy quarkonia in potential approach of NRQCD

    Get PDF
    We consider a general scheme for calculating the leptonic constant of heavy quarkonium QQ-bar in the framework of nonrelativistic quantum chromodynamics, NRQCD, operating as the effective theory of nonrelativistic heavy quarks. We explore the approach of static potential in QCD, which takes into account both the evolution of effective charge in the three-loop approximation and the linearly raising potential term, which provides the quark confinement. The leptonic constants of bb-bar and cc-bar systems are evaluated by making use of two-loop anomalous dimension for the current of nonrelativistic quarks, where the factor for the normalization of matrix element is introduced in order to preserve the renormalization group invariance of estimates.Comment: 18 pages, 6 eps-figures, discussion and references added, vNRQCD analysis considere

    Nuclear pairing: new perspectives

    Full text link
    Nuclear pairing correlations are known to play an important role in various single-particle and collective aspects of nuclear structure. After the first idea by A. Bohr, B. Mottelson and D. Pines on similarity of nuclear pairing to electron superconductivity, S.T. Belyaev gave a thorough analysis of the manifestations of pairing in complex nuclei. The current revival of interest in nuclear pairing is connected to the shift of modern nuclear physics towards nuclei far from stability; many loosely bound nuclei are particle-stable only due to the pairing. The theoretical methods borrowed from macroscopic superconductivity turn out to be insufficient for finite systems as nuclei, in particular for the cases of weak pairing and proximity of continuum states. We suggest a simple numerical procedure of exact solution of the nuclear pairing problem and discuss the physical features of this complete solution. We show also how the continuum states can be naturally included in the consideration bridging the gap between the structure and reactions. The path from coherent pairing to chaos and thermalization and perspectives of new theoretical approaches based on the full solution of pairing are discussed.Comment: 47 pages, 11 figure
    • …
    corecore