26 research outputs found
Role of the Various Surface Sites and Species in CO Hydrogenation Over Alumina-supported Co-Pd Catalysts
The paper is focused on evaluation of active centres and impact of adsorbed species on (10%Co+0.5%Pd)/Al2O3 catalyst system performance aiming selectivity optimization. Application of different sets of precursor pretreatment and reduction resulted in catalysts exhibiting high CO conversion or high methane selectivity. A sample of high selectivity was prepared by pretreatment in hydrogen and the performance was determined by lower amount of strongly adsorbed CO, strongly adsorbed carbonate species, and higher amount of reduced metal and bimetallic particles. A more active system was formed by pretreatment in air leading to larger amount of unreduced metal and CO-bridged species on the surface, stable coverage of hydroxyl groups on the support, and medium-strength sites for adsorption of carbonates. Ratios of hydrogen to carbon monoxide adsorption (H/СО) and of strongly to weakly adsorbed СО species appeared as important criteria for catalyst efficiency together with supported metal state, amount of unreduced ions, bimetallic particle formation, and alumina’s ability to adsorb CO and CO2.
This work is licensed under a Creative Commons Attribution 4.0 International License
Co-Mn oxides supported on hierarchical macro-mesoporous silica for CO and VOCs oxidation
The hierarchical macro-mesoporous silica (MMS) was used for a first time as a support for catalysts for oxidation reactions. The macro-mesoporous silica was synthesized by the emulsions templating mechanism and modified separately or simultaneously using cobalt and manganese oxides. The obtained materials were characterized by different physicochemical methods and tested in the oxidation of CO and n-hexane combustion reactions. The modification of the MMS materials does not change significantly the mesopores characteristics; however, its pores are partially blocked by the oxides. For Co-MM sample agglomerates consisting of Co3O4 with average size of 100−150 nm and small spherical aggregates, encapsulated in the mesopores are formed. The amorphous manganese oxide preferentially fills up the mesopores in Mn-MM sample. Mixed oxide Co-Mn phases situated in the mesoporous network are formed in the bi-component Co-Mn samples. No significant change is observed either in the texture, or in the structural features of the catalysts after reaction.
The highest catalytic activity for Co-MM sample in CO and n-hexane oxidation is related to the predomination of Co3+ species on the surface of Co3O4 and the more accessible oxide particles located outside the mesopores. The encapsulation of mixed Co-Mn oxides particles in the pores of the macro-mesoporous silica is responsible for a lower catalytic activity in comparison with that of the mono-component cobalt sample