1,690 research outputs found

    Discovery of a lectin domain that regulates enzyme activity in mouse N-acetylglucosaminyltransferase-IVa (MGAT4A)

    Get PDF
    N-Glycosylation is a common post-translational modification, and the number of GlcNAc branches in N-glycans impacts glycoprotein functions. N-Acetylglucosaminyltransferase-IVa (GnT-IVa, also designated as MGAT4A) forms a β1-4 GlcNAc branch on the α1-3 mannose arm in N-glycans. Downregulation or loss of GnT-IVa causes diabetic phenotypes by dysregulating glucose transporter-2 in pancreatic β-cells. Despite the physiological importance of GnT-IVa, its structure and catalytic mechanism are poorly understood. Here, we identify the lectin domain in mouse GnT-IVa’s C-terminal region. The crystal structure of the lectin domain shows structural similarity to a bacterial GlcNAc-binding lectin. Comprehensive glycan binding assay using 157 glycans and solution NMR reveal that the GnT-IVa lectin domain selectively interacts with the product N-glycans having a β1-4 GlcNAc branch. Point mutation of the residue critical to sugar recognition impairs the enzymatic activity, suggesting that the lectin domain is a regulatory subunit for efficient catalytic reaction. Our findings provide insights into how branching structures of N-glycans are biosynthesized

    Activity of Japanese Society of Grassland Science

    Get PDF
    The Japanese Society of Grassland Science (JSGS) was founded in 1954 for the purposes of progressing grassland and forage crop sciences and fostering grassland agriculture and better management of grassland for animal production in Japan. From the first, the members of JSGS have included interdisciplinary scientists from forage crop science, forestry, animal science, agribusiness and many related fields. In the 50 years since its foundation, JSGS has made large contributions to the progress of both science and industry in Japan. The number of JSGS members is now declining slightly, but there are still about 950 including 800 individual members and 150 organisations or private companies. The profile of the current members is mainly scientists working in university or governmental and private research institutes

    DDBJ dealing with mass data produced by the second generation sequencer

    Get PDF
    DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) collected and released 2 368 110 entries or 1 415 106 598 bases in the period from July 2007 to June 2008. The releases in this period include genome scale data of Bombyx mori, Oryzas latipes, Drosophila and Lotus japonicus. In addition, from this year we collected and released trace archive data in collaboration with National Center for Biotechnology Information (NCBI). The first release contains those of O. latipes and bacterial meta genomes in human gut. To cope with the current progress of sequencing technology, we also accepted and released more than 100 million of short reads of parasitic protozoa and their hosts that were produced by using a Solexa sequencer

    Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks

    Full text link
    Prediction of one-dimensional protein structures such as secondary structures and contact numbers is useful for the three-dimensional structure prediction and important for the understanding of sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrices, to the prediction of secondary structures (SS), contact numbers (CN), and residue-wise contact orders (RWCO). The present method achieves, on average, Q3Q_3 accuracy of 77.8% for SS, correlation coefficients of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS prediction is comparable to other state-of-the-art methods, and that of the CN prediction is a significant improvement over previous methods. We give a detailed formulation of critical random networks-based prediction scheme, and examine the context-dependence of prediction accuracies. In order to study the nonlinear and multi-body effects, we compare the CRNs-based method with a purely linear method based on position-specific scoring matrices. Although not superior to the CRNs-based method, the surprisingly good accuracy achieved by the linear method highlights the difficulty in extracting structural features of higher order from amino acid sequence beyond that provided by the position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for publication in BIOPHYSIC

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    Apolipoprotein E4 Frequencies in a Japanese Population with Alzheimer's Disease and Dementia with Lewy Bodies

    Get PDF
    BACKGROUND: The apolipoprotein E (APOE) ε4 allele has been reported to be a risk factor for Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Previous neuropathological studies have demonstrated similar frequencies of the APOE ε4 allele in AD and DLB. However, the few ante-mortem studies on APOE allele frequencies in DLB have shown lower frequencies than post-mortem studies. One reason for this may be inaccuracy of diagnosis. We examined APOE genotypes in subjects with AD, DLB, and a control group using the latest diagnostic criteria and MRI, SPECT, and MIBG myocardial scintigraphy. METHODS: The subjects of this study consisted of 145 patients with probable AD, 50 subjects with probable DLB, and a control group. AD subjects were divided into two groups based on age of onset: early onset AD (EOAD) and late onset AD (LOAD). All subjects had characteristic features on MRI, SPECT, and/or myocardial scintigraphy. RESULTS: The rate of APOE4 carrier status was 18.3% and the frequency of the ε4 allele was 9.7% in controls. The rate of APOE4 carrier status and the frequency of the ε4 allele were 47% and 27% for LOAD, 50% and 31% for EOAD, and 42% and 31% for DLB, respectively. CONCLUSION: The APOE4 genotypes in this study are consistent with previous neuropathological studies suggesting accurate diagnosis of AD and DLB. APOE4 genotypes were similar in AD and DLB, giving further evidence that the ε4 allele is a risk factor for both disorders

    The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions

    Get PDF
    The Genomes TO Protein Structures and Functions (GTOP) database (http://spock.genes.nig.ac.jp/~genome/gtop.html) freely provides an extensive collection of information on protein structures and functions obtained by application of various computational tools to the amino acid sequences of entirely sequenced genomes. GTOP contains annotations of 3D structures, protein families, functions, and other useful data of a protein of interest in user-friendly ways to give a deep insight into the protein structure. From the initial 1999 version, GTOP has been continually updated to reap the fruits of genome projects and augmented to supply novel information, in particular intrinsically disordered regions. As intrinsically disordered regions constitute a considerable fraction of proteins and often play crucial roles especially in eukaryotes, their assignments give important additional clues to the functionality of proteins. Additionally, we have incorporated the following features into GTOP: a platform independent structural viewer, results of HMM searches against SCOP and Pfam, secondary structure predictions, color display of exon boundaries in eukaryotic proteins, assignments of gene ontology terms, search tools, and master files
    corecore