672 research outputs found
Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies
To improve the quality of cancer treatment with protons, a translation of
X-ray Computed Tomography (CT) images into a map of the proton stopping powers
needs to be more accurate. Proton stopping powers determined from CT images
have systematic uncertainties in the calculated proton range in a patient of
typically 3-4\% and even up to 10\% in region containing
bone~\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}.
As a consequence, part of a tumor may receive no dose, or a very high dose can
be delivered in healthy ti\-ssues and organs at risks~(e.g. brain
stem)~\cite{ACKnopf2013}. A transmission radiograph of high-energy protons
measuring proton stopping powers directly will allow to reduce these
uncertainties, and thus improve the quality of treatment.
The best way to obtain a sufficiently accurate radiograph is by tracking
individual protons traversing the phantom
(patient)~\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations we
have used an ideal position sensitive detectors measuring a single proton
before and after a phantom, while the residual energy of a proton was detected
by a BaF crystal. To obtain transmission radiographs, diffe\-rent phantom
materials have been irradiated with a 3x3~cm scattered proton beam, with
various beam energies. The simulations were done using the Geant4 simulation
package~\cite{SAgostinelli2003}.
In this study we focus on the simulations of the energy loss radiographs for
various proton beam energies that are clinically available in proton
radiotherapy.Comment: 6 pages, 6 figures, Presented at Jagiellonian Symposium on
Fundamental and Applied Subatomic Physics, 7-12 June, 2015, Krak\'ow, Polan
Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3
The magnetic properties of the interacting dimer system TlCuCl3 are
investigated within a bond-operator formulation. The observed field-induced
staggered magnetic order perpendicular to the field is described as a Bose
condensation of magnons which are linear combinations of dimer singlet and
triplet modes. This technique accounts for the magnetization curve and for the
field dependence of the magnon dispersion curves observed by high-field neutron
scattering measurements.Comment: 4 pages, 4 figures, REVTeX
Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells
LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety ofimmune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon- (TRIF) pathways, but relatively few studies have examinedthese pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses inB cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88−/−B cells weremarkedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF−/−Bcells were also impaired in these responses compared with WT B cells, but showed better responses thanMyD88−/−B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88−/−B cells showed similar patterns of CSR to WT B cells. However, TRIF−/−B cells showed the impaired inthe CSR. Compared with WT and MyD88−/−B cells, TRIF−/−B cells exhibited reduced cell division, fewerIgG1+cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expressionin response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization wasimpaired in TRIF−/−mice, while MyD88−/−mice exhibited increased IgG1 production. Thus, MyD88 andTRIF pathways differently regulate TLR4-induced immune responses in B cells
Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl
Neutron elastic scattering experiments have been performed on the spin gap
system TlCuCl in magnetic fields parallel to the -axis. The magnetic
Bragg peaks which indicate the field-induced N\'{e}el ordering were observed
for magnetic field higher than the gap field T at with odd in the plane. The spin structure in the ordered
phase was determined. The temperature and field dependence of the Bragg peak
intensities and the phase boundary obtained were discussed in connection with a
recent theory which describes the field-induced N\'{e}el ordering as a
Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl
Magnetization plateaus in weakly coupled dimer spin system
I study a spin system consisting of strongly coupled dimers which are in turn
weakly coupled in a plane by zigzag interactions. The model can be viewed as
the strong-coupling limit of a two-dimensional zigzag chain structure typical,
e.g., for the -planes of KCuCl_3. It is shown that the magnetization
curve in this model has plateaus at 1/3 and 2/3 of the saturation
magnetization, and an additional plateau at 1/2 can appear in a certain range
of the model parameters; the critical fields are calculated perturbatively. It
is argued that for the three-dimensional lattice structure of the KCuCl_3
family the plateaus at 1/4 and 3/4 of the saturation can be favored in a
similar way, which might be relevant to the recent experiments on NH_4CuCl_3 by
Shiramura et al., J. Phys. Soc. Jpn. {\bf 67}, 1548 (1998).Comment: serious changes in Sect. II,III, final version to appear in PR
Theoretical analysis of the experiments on the double-spin-chain compound -- KCuCl
We have analyzed the experimental susceptibility data of KCuCl and found
that the data are well-explained by the double-spin-chain models with strong
antiferromagnetic dimerization. Large quantum Monte Carlo calculations were
performed for the first time in the spin systems with frustration. This was
made possible by removing the negative-sign problem with the use of the dimer
basis that has the spin-reversal symmetry. The numerical data agree with the
experimental data within 1% relative errors in the whole temperature region. We
also present a theoretical estimate for the dispersion relation and compare it
with the recent neutron-scattering experiment. Finally, the magnitude of each
interaction bond is predicted.Comment: 4 pages, REVTeX, 5 figures in eps-file
Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2
Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons. The IXS spectrum of the coupled system contains not only the phonon dispersion but also the so far undetected magnetic correlation function. Here we report the observation of strong magnon-phonon coupling in LiCrO2 that enables the measurement of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon excitations and electric dipole active two-magnon excitations in the magnetically ordered phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict that several (frustrated) magnets with dominant direct exchange and non-collinear magnetism show surprisingly large IXS cross-section for magnons and multi-magnon processes
Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)
We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the number of DNA masses per petal at least doubled. This indicated chromatin fragmentation, either inside or outside the nucleus. Staining with the cationic lipophilic fluoroprobe DiOC6 indicated that each DNA mass had an external membrane. Fluorescence microscopy of the nuclei and DNA masses revealed an initial decrease in diameter together with chromatin condensation. The diameters of these condensed nuclei were about 70% of original. Two populations of nuclear diameter, one with an average diameter about half of the other, were observed at initial stages of nuclear fragmentation. The diameter of the DNA masses then gradually decreased further. The smallest observed DNA masses had a diameter less than 10% of that of the original nucleus. Cycloheximide treatment arrested the cytometrically determined changes in DNA fluorescence, indicating protein synthesis requirement. Ethylene inhibitors (AVG and 1-MCP) had no effect on the cytometrically determined DNA changes, suggesting that these processes are not controlled by endogenous ethylene
- …