235 research outputs found

    Microwave and millimeter wave spectroscopy in the slightly hole-doped ladders of Sr14_{14}Cu24_{24}O41_{41}

    Full text link
    We have measured the temperature- and frequency dependence of the microwave and millimeter wave conductivity σ1(T,ω)\sigma_1(T,\omega) along both the ladder (c-axis) and the leg (a-axis) directions in Sr14_{14}Cu24_{24}O41_{41}. Below a temperature T∗T^*(∼\sim170 K), we observed a stronger frequency dependence in σ1c(T,ω)\sigma_1^c(T,\omega) than that in σ1a(T,ω)\sigma_1^a(T,\omega), forming a small resonance peak developed between 30 GHz and 100 GHz. We also observed nonlinear dc conduction along the c-axis at rather low electric fields below T∗T^*. These results suggest some collective excitation contributes to the c-axis charge dynamics of the slightly hole-doped ladders of Sr14_{14}Cu24_{24}O41_{41} below T∗T^*.Comment: 7 pages, 4 figure, to be published in Europhysics Letter

    The Internal Model Principle:Asymptotic Tracking and Regulation in the Behavioral Framework

    Get PDF
    Given a plant, together with an exosystem generating the disturbances and the reference signals, the problem of asymptotic tracking and regulation is to find a controller such that the to-be-controlled plant variable tracks the reference signal regardless of the disturbance acting on the system. If a controller achieves this design objective, we call it a regulator for the plant with respect to the given exosystem. In this paper we formulate the asymptotic tracking and regulation problem in the behavioral framework, with control as interconnection. The problem formulation and its resolution are completely representation free, and specified only in terms of the plant and exosystem dynamics

    The Internal Model Principle:Asymptotic Tracking and Regulation in the Behavioral Framework

    Get PDF

    A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    Full text link
    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50 x 20 deg. at a wavelength of 9 micron. Aims. We investigate the origin and the physical properties of the residual component. Methods. We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results. The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I_9um/I_18um with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions. Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.Comment: 5 pages, 4 figures, accepted by Astronomy and Astrophysic

    The Internal Model Principle:Asymptotic Tracking and Regulation in the Behavioral Framework

    Get PDF

    The 2006 Radio Outburst of a Microquasar Cyg X-3: Observation and Data

    Full text link
    We present the results of the multi-frequency observations of radio outburst of the microquasar Cyg X-3 in February and March 2006 with the Nobeyama 45-m telescope, the Nobeyama Millimeter Array, and the Yamaguchi 32-m telescope. Since the prediction of a flare by RATAN-600, the source has been monitored from Jan 27 (UT) with these radio telescopes. At the eighteenth day after the quench of the activity, successive flares exceeding 1 Jy were observed successfully. The time scale of the variability in the active phase is presumably shorter in higher frequency bands. We also present the result of a follow-up VLBI observation at 8.4 GHz with the Japanese VLBI Network (JVN) 2.6 days after the first rise. The VLBI image exhibits a single core with a size of <8 mas (80 AU). The observed image was almost stable, although the core showed rapid variation in flux density. No jet structure was seen at a sensitivity of Tb=7.5×105T_b = 7.5\times 10^5 K.Comment: 17 pages,6 figures; accepted by PAS
    • …
    corecore