20,975 research outputs found
Induced top Yukawa coupling and suppressed Higgs mass parameters
In the scenarios with heavy top squarks, mass parameters of the Higgs field
must be fine-tuned due to a large logarithmic correction to the soft scalar
mass. We consider a new possibility that the top Yukawa coupling is small above
TeV scale. The large top mass is induced from strong Yukawa interaction of the
Higgs with another gauge sector, in which supersymmetry breaking parameters are
given to be small. Then it is found that the logarithmic correction to the
Higgs soft scalar mass is suppressed in spite of the strong coupling and the
fine-tuning is ameliorated. We propose an explicit model coupled to a
superconformal gauge theory which realizes the above situation.Comment: RevTeX4 style, 10 pages, 3 figure
X-ray and Radio Follow-up Observations of High-Redshift Blazar Candidates in the Fermi-LAT Unassociated Source Population
We report on the results of X-ray and radio follow-up observations of two GeV
gamma-ray sources 2FGL J0923.5+1508 and 2FGL J1502.1+5548, selected as
candidates for high-redshift blazars from unassociated sources in the {\it
Fermi} Large Area Telescope Second Source Catalog. We utilize the Suzaku
satellite and the VLBI Exploration of Radio Astrometry (VERA) telescopes for
X-ray and radio observations, respectively. For 2FGL J0923.5+1508, a possible
radio counterpart NVSS J092357+150518 is found at 1.4 GHz from an existing
catalog, but we do not detect any X-ray emission from it and derive a flux
upper limit 1.37 10 erg cm
s. Radio observations at 6.7 GHz also result in an upper limit of
19 mJy, implying a steep radio spectrum that is not
expected for a blazar. On the other hand, we detect X-rays from NVSS
J150229+555204, the potential 1.4 GHz radio counterpart of 2FGL J1502.1+5548.
The X-ray spectrum can be fitted with an absorbed power-law model with a photon
index =1.8 and the unabsorbed flux is =4.3 10 erg cm s. Moreover,
we detect unresolved radio emission at 6.7 GHz with flux =30.1
mJy, indicating a compact, flat-spectrum radio source. If NVSS J150229+555204
is indeed associated with 2FGL J1502.1+5548, we find that its multiwavelength
spectrum is consistent with a blazar at redshift .Comment: 24 pages, 7 figures, 6 tables, accepted for publication in Ap
Charmless decays and new physics effects in the mSUGRA model
By employing the QCD factorization approach, we calculate the new physics
contributions to the branching radios of the two-body charmless and
decays in the framework of the minimal supergravity (mSUGRA) model.
we choose three typical sets of the mSUGRA input parameters in which the Wilson
coefficient can be either SM-like (the case A and C) or has
a flipped-sign (the case B). We found numerically that (a) the SUSY
contributions are always very small for both case A and C; (b) for those
tree-dominated decays, the SUSY contributions in case B are also very small;
(c) for those QCD penguin-dominated decay modes, the SUSY contributions in case
B can be significant, and can provide an enhancement about to
the branching ratios of and decays, but a
reduction about to decays; and (d) the
large SUSY contributions in the case B may be masked by the large theoretical
errors dominated by the uncertainty from our ignorance of calculating the
annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version
Exact diagonalization study of optical conductivity in two-dimensional Hubbard model
The optical conductivity \sigma(\omega) in the two-dimensional Hubbard model
is examined by applying the exact diagonalization technique to small square
clusters with periodic boundary conditions up to \sqrt{20} X \sqrt{20} sites.
Spectral-weight distributions at half filling and their doping dependence in
the 20-site cluster are found to be similar to those in a \sqrt{18} X \sqrt{18}
cluster, but different from 4 X 4 results. The results for the 20-site cluster
enable us to perform a systematic study of the doping dependence of the
spectral-weight transfer from the region of the Mott-gap excitation to
lower-energy regions. We discuss the dependence of the Drude weight and the
effective carrier number on the electron density at a large on-site Coulomb
interaction.Comment: 5 pages, 5 figure
Observation of EAS using a large water tank
Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984
Spin-Orbit Force from Lattice QCD
We present a first attempt to determine nucleon-nucleon potentials in the
parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2
lattice QCD simulations. These potentials are constructed from the
Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond
to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively.
We have found a large and attractive spin-orbit potential VLS(r) in the
isospin-triplet channel, which is qualitatively consistent with the
phenomenological determination from the experimental scattering phase shifts.
The potentials obtained from lattice QCD are used to calculate the scattering
phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive
spin-orbit force and a weak repulsive central force in spin-triplet P-wave
channels lead to an attraction in the 3P2 channel, which is related to the
P-wave neutron paring in neutron stars.Comment: 14 pages, 5 figures, Physics Letters B published versio
Coupled channel approach to strangeness S = -2 baryon-bayron interactions in Lattice QCD
The baryon-baryon interactions with strangeness S = -2 with the flavor SU(3)
breaking are calculated for the first time by using the HAL QCD method extended
to coupled channel system in lattice QCD. The potential matrices are extracted
from the Nambu-Bethe-Salpeter wave functions obtained by the 2+1 flavor gauge
configurations of CP-PACS/JLQCD Collaborations with a physical volume of 1.93
fm cubed and with m_pi/m_K = 0.96, 0.90, 0.86. The spatial structure and the
quark mass dependence of the potential matrix in the baryon basis and in the
SU(3) basis are investigated.Comment: 17 pages, 15 figure
- …