863 research outputs found
Variability in X-ray line ratios in helium-like ions of massive stars: the radiation-driven case
Line ratios in "fir" triplets of helium-like ions have proven to be a
powerful diagnostic of conditions in X-ray emitting gas surrounding massive
stars. Recent observations indicate that these ratios can be variable with
time.
The possible causes of variation in line ratios are limited: changes in the
radiation field or changes in density, and changes in mass-loss or geometry. In
this paper, we investigate the ability of changes in the radiation field to
induce variability in the ratio R=f/i.
To isolate the radiative effect, we use a heuristic model of temperature and
radius changes in variable stars in the B and O range with low-density,
steady-state winds. We model the changes in emissivity of X-ray emitting gas
close to the star due to differences in level-pumping from available UV photons
at the location of the gas.
We find that under these conditions, variability in R is dominated by the
stellar temperature. Although the relative amplitude of variability is roughly
comparable for most lines at most temperatures, detectable variations are
limited to a few lines for each spectral type. We predict that variable values
in R due to stellar variability must follow predictable trends found in our
simulations.
Our model uses radial pulsations as a mode of stellar variability that
maximizes the amplitude of variation in R. This model is robust enough to show
which ions will provide the best opportunity for observing variability in the
f/i ratio at different stellar temperatures, and the correlation of that
variability with other observable parameters. In real systems, the effects
would be more complex than in our model, with differences in phase and
suppressed amplitude in the presence of non-radial pulsations. This suggests
that changes in R across many lines concurrently are not likely to be produced
by a variable radiation field.Comment: 10 pages, 6 figure
An X-ray Study of Two B+B Binaries: AH Cep and CW Cep
AH Cep and CW Cep are both early B-type binaries with short orbital periods
of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The
binaries are also double-lined spectroscopic and eclipsing. Consequently,
solutions for orbital and stellar parameters make the pair of binaries ideal
targets for a study of the colliding winds between two B~stars. {\em Chandra}
ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was
detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of
erg s, or ,
relative to the combined Bolometric luminosities of the two components. While
formally consistent with expectations for embedded wind shocks, or binary wind
collision, the near-twin system of CW~Cep was a surprising non-detection. For
CW~Cep, an upper limit was determined with , again
for the combined components. One difference between these two systems is that
AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from
standard wind shocks nor wind collision, but perhaps instead from magnetism in
any one of the four components of the system. The possibility could be tested
by searching for cyclic X-ray variability in AH~Cep on the short orbital period
of the inner B~stars.Comment: Astrophysical Journal, accepte
Variability in X-ray line ratios in helium-like ions of massive stars: the wind-driven case
High spectral resolution and long exposure times are providing unprecedented
levels of data quality of massive stars at X-ray wavelengths. A key diagnostic
of the X-ray emitting plasma are the fir lines for He-like triplets. In
particular, owing to radiative pumping effects, the
forbidden-to-intercombination line luminosity ratio, R=f/i, can be used to
determine the proximity of the hot plasma to the UV-bright photospheres of
massive stars. Moreover, the era of large observing programs additionally
allows for investigation of line variability. This contribution is the second
to explore how variability in the line ratio can provide new diagnostic
information about distributed X-rays in a massive star wind. While there are
many ways to drive variability in the line ratio, we use variable mass loss as
an illustrative example. The f/i ratio can be significantly modulated owing to
evolving wind properties. We evaluate how variable mass loss might bias
measures of f/i.Comment: to appear in A&
Variability in X-ray Line Ratios in Helium-Like Ions of Massive Stars: The Wind-Driven Case
Context. High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths.
Aims. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to radiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R = f∕i, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability.
Methods. This contribution is the second to explore how variability in the line ratio can provide new diagnostic information about distributed X-rays in a massive star wind. We focus on wind integration for total line luminosities, taking account of radiative pumping and stellar occultation. While the case of a variable stellar radiation field was explored in the first paper, the effects of wind variability are emphasized in this work.
Results. We formulate an expression for the ratio of line luminosities f∕i that closely resembles the classic expression for the on-the-spot result. While there are many ways to drive variability in the line ratio, we use variable mass loss as an illustrative example for wind integration, particularly since this produces no variability for the on-the-spot case. The f∕i ratio can be significantly modulated owing to evolving wind properties. The extent of the variation depends on how the timescale for the wind flow compares to the timescale over which the line emissivities change.
Conclusions. While a variety of factors can ellicit variable line ratios, a time-varying mass-loss rate serves to demonstrate the range of amplitude and phased-dependent behavior in f∕i line ratios. Importantly, we evaluate how variable mass loss might bias measures of f∕i. For observational exposures that are less than the timescale of variable mass loss, biased measures (relative to the time-averaged wind) can result; if exposures are long, the f∕i ratio is reflective of the time-averaged spherical wind
A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary Orionis Aa: II. X-ray Variability
We present time-resolved and phase-resolved variability studies of an
extensive X-ray high-resolution spectral dataset of the Orionis Aa
binary system. The four observations, obtained with Chandra ACIS HETGS, have a
total exposure time of ~479 ks and provide nearly complete binary phase
coverage. Variability of the total X-ray flux in the range 5-25 is
confirmed, with maximum amplitude of about +/-15% within a single ~125 ks
observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as
well as an apparent overall increase in flux level throughout the 9-day
observational campaign. Using 40 ks contiguous spectra derived from the
original observations, we investigate variability of emission line parameters
and ratios. Several emission lines are shown to be variable, including S XV, Si
XIII, and Ne IX. For the first time, variations of the X-ray emission line
widths as a function of the binary phase are found in a binary system, with the
smallest widths at phase=0.0 when the secondary Orionis Aa2 is at
inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds,
we relate the emission line width variability to the presence of a wind cavity
created by a wind-wind collision, which is effectively void of embedded wind
shocks and is carved out of the X-ray-producing primary wind, thus producing
phase-locked X-ray variability.Comment: 36 pages, 14 Tables, 19 Figures, accepted by ApJ, one of 4 related
papers to be published togethe
Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect
Aims: This paper extends previous studies in modeling time varying linear
polarization due to axisymmetric magnetic fields in rotating stars. We use the
Hanle effect to predict variations in net line polarization, and use geometric
arguments to generalize these results to linear polarization due to other
mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple
analytic models of rotating stars that are symmetric except for an axisymmetric
magnetic field to predict the polarization lightcurve due to the Hanle effect.
We highlight the effects for the variable line polarization as a function of
viewing inclination and field axis obliquity. Finally, we use geometric
arguments to generalize our results to linear polarization from the weak
transverse Zeeman effect. Results: We derive analytic expressions to
demonstrate that the variable polarization lightcurve for an oblique magnetic
rotator is symmetric. This holds for any axisymmetric field distribution and
arbitrary viewing inclination to the rotation axis. Conclusions: For the
situation under consideration, the amplitude of the polarization variation is
set by the Hanle effect, but the shape of the variation in polarization with
phase depends largely on geometrical projection effects. Our work generalizes
the applicability of results described in Lopez Ariste et al., inasmuch as the
assumptions of a spherical star and an axisymmetric field are true, and
provides a strategy for separating the effects of perspective from the Hanle
effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this
preprint versio
A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum
We present an overview of four phase-constrained Chandra HETGS X-ray
observations of Delta Ori A. Delta Ori A is actually a triple system which
includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the
only such object which can be observed with little phase-smearing with the
Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray
luminosity than the brighter primary, Delta Ori A provides a unique system with
which to test the spatial distribution of the X-ray emitting gas around Delta
Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray
dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for
the combined observation, having an exposure time of nearly 500 ksec and
covering nearly the entire binary orbit. Companion papers discuss the X-ray
variability seen in the Chandra spectra, present new space-based photometry and
ground-based radial velocities simultaneous with the X-ray data to better
constrain the system parameters, and model the effects of X-rays on the optical
and UV spectrum. We find that the X-ray emission is dominated by embedded wind
shock emission from star Aa1, with little contribution from the tertiary star
Ab or the shocked gas produced by the collision of the wind of Aa1 against the
surface of Aa2. We find a similar temperature distribution to previous X-ray
spectrum analyses. We also show that the line half-widths are about
the terminal velocity of the wind of star Aa1. We find a strong
anti-correlation between line widths and the line excitation energy, which
suggests that longer-wavelength, lower-temperature lines form farther out in
the wind. Our analysis also indicates that the ratio of the intensities of the
strong and weak lines of \ion{Fe}{17} and \ion{Ne}{10} are inconsistent with
model predictions, which may be an effect of resonance scatteringComment: accepted by ApJ; revised according to ApJ proo
- …