133 research outputs found

    Two rapid assays for screening of patulin biodegradation

    Get PDF
    Artículo sobre distintos ensayos para comprobar la biodegradación de la patulinaThe mycotoxin patulin is produced by the blue mould pathogen Penicillium expansum in rotting apples during postharvest storage. Patulin is toxic to a wide range of organisms, including humans, animals, fungi and bacteria. Wash water from apple packing and processing houses often harbours patulin and fungal spores, which can contaminate the environment. Ubiquitous epiphytic yeasts, such as Rhodosporidium kratochvilovae strain LS11 which is a biocontrol agent of P. expansum in apples, have the capacity to resist the toxicity of patulin and to biodegrade it. Two non-toxic products are formed. One is desoxypatulinic acid. The aim of the work was to develop rapid, high-throughput bioassays for monitoring patulin degradation in multiple samples. Escherichia coli was highly sensitive to patulin, but insensitive to desoxypatulinic acid. This was utilized to develop a detection test for patulin, replacing time-consuming thin layer chromatography or high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium and the other in semi-solid medium. Both assays allow the contemporary screening of a large number of samples. The liquid medium assay utilizes 96-well microtiter plates and was optimized for using a minimum of patulin. The semisolid medium assay has the added advantage of slowing down the biodegradation, which allows the study and isolation of transient degradation products. The two assays are complementary and have several areas of utilization, from screening a bank of microorganisms for biodegradation ability to the study of biodegradation pathways

    Conversion of the Mycotoxin Patulin to the Less Toxic Desoxypatulinic Acid by the Biocontrol Yeast Rhodosporidium kratochvilovae Strain LS11

    Get PDF
    Se describe en este artículo el descubrimiento de la degradación de la micotoxina patulina por una levaduraThe infection of stored apples by the fungus Penicillium expansum causes the contamination of fruits and fruit-derived products with the mycotoxin patulin, which is a major issue in food safety. Fungal attack can be prevented by beneficial microorganisms, so-called biocontrol agents. Previous time-course thin layer chromatography analyses showed that the aerobic incubation of patulin with the biocontrol yeast Rhodosporidium kratochvilovae strain LS11 leads to the disappearance of the mycotoxin spot and the parallel emergence of two new spots, one of which disappears over time. In this work, we analyzed the biodegradation of patulin effected by LS11 through HPLC. The more stable of the two compounds was purified and characterized by nuclear magnetic resonance as desoxypatulinic acid, whose formation was also quantitated in patulin degradation experiments. After R. kratochvilovae LS11 had been incubated in the presence of 13C-labeled patulin, label was traced to desoxypatulinic acid, thus proving that this compound derives from the metabolization of patulin by the yeast. Desoxypatulinic acid was much less toxic than patulin to human lymphocytes and, in contrast to patulin, did not react in vitro with the thiol-bearing tripeptide glutathione. The lower toxicity of desoxypatulinic acid is proposed to be a consequence of the hydrolysis of the lactone ring and the loss of functional groups that react with thiol groups. The formation of desoxypatulinic acid from patulin represents a novel biodegradation pathway that is also a detoxification process

    Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp507826jWe report a joint experimental and theoretical study of the structural and vibrational properties of synthetic sphaerobismoite (beta-Bi2O3) at high pressures in which room-temperature angle-dispersive X-ray diffraction (XRD) and Raman scattering measurements have been complemented with ab initio total energy and lattice dynamics calculations. Striking changes in Raman spectra were observed around 2 GPa, whereas X-ray diffraction measurements evidence no change in the tetragonal symmetry of the compound up to 20 GPa; however, a significant change exists in the compressibility when increasing pressure above 2 GPa. These features have been understood by means of theoretical calculations, which show that beta-Bi2O3 undergoes a pressure-induced isostructural phase transition near 2 GPa. In the new isostructural beta' phase, the Bi3+ and O2- environments become more regular than those in the original beta phase because of the strong decrease in the activity of the lone electron pair of Bi above 2 GPa. Raman measurements and theoretical calculations provide evidence of the second-order nature of the pressure-induced isostructural transition. Above 20 GPa, XRD measurements suggest a partial amorphization of the sample despite Raman measurements still show weak peaks, probably related to a new unknown phase which remains up to 27 GPa. On pressure release, XRD patterns and Raman spectra below 2 GPa correspond to elemental Bi-I, thus evidencing a pressure-induced decomposition of the sample during downstroke.Financial support from the Spanish Consolider Ingenio 2010 Program (MALTA Project CSD2007-00045) is acknowledged. This work was also supported by Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under Project 201050/2012-9, Spanish MICINN under Projects MAT2010-21270-004-01/03/04 and MAT2013-46649-C4-2/3/4-P, Spanish MINECO under Project CTQ2012-36253-C03-02, and from Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. JAS. acknowledges Juan de la Cierva fellowship program for financial support.Pereira, ALJ.; Sans Tresserras, JÁ.; Vilaplana Cerda, RI.; Gomis, O.; Manjón Herrera, FJ.; Rodriguez-Hernandez, P.; Muñoz, A.... (2014). Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study. Journal of Physical Chemistry C. 118(40):23189-23201. https://doi.org/10.1021/jp507826jS23189232011184

    Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution.</p> <p>Results</p> <p>Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control.</p> <p>Conclusion</p> <p>The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.</p

    Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity

    Get PDF
    Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity

    Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    Get PDF
    BACKGROUND: Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. METHODS: The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). RESULTS: The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. CONCLUSION: These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future

    Toksikološka svojstva citrinina

    Get PDF
    Citrinin (CTN) is a nephrotoxic mycotoxin produced by several fungal strains belonging to the genera Penicillium, Aspergillus, and Monascus. It contaminates various commodities of plant origin, cereals in particular, and is usually found together with another nephrotoxic mycotoxin, ochratoxin A (OTA). These two mycotoxins are believed to be involved in the aetiology of endemic nephropathy. In addition to nephrotoxicity, CTN is also embryocidal and fetotoxic. The genotoxic properties of CTN have been demonstrated with the micronuleus test (MN), but not with single-cell gel electrophoresis. The mechanism of CTN toxicity is not fully understood, especially not whether CTN toxicity and genotoxicity are the consequence of oxidative stress or of increased permeability of mitochondrial membranes. CTN requires complex cellular biotransformation to exert mutagenicity. Compared with other mycotoxins, CTN contamination of food and feed is rather scarce. However, it is reasonable to believe that humans are much more frequently exposed to CTN than generally accepted, because it is produced by the same moulds as OTA, which is a common contaminant of human food all over the world. At present, there are no specifi c regulations either in Croatia or in the European Union concerning CTN in any kind of commodity.Citrinin (CTN) nefrotoksičan je mikotoksin koji proizvode različiti sojevi plijesni iz rodova Penicillium, Aspergillus i Monascus. CTN se može naći u različitim namirnicama biljnog podrijetla, osobito u žitaricama i obično se nalazi zajedno s drugim nefrotoksičnim mikotoksinom, okratoksinom A (OTA). Pretpostavlja se da je izloženost ovim mikotoksinima povezana s nastankom endemske nefropatije. Osim što je nefrotoksičan, CTN je još i embricidan i fetotoksičan. Na genotoksičnost citrinina upućuje pozitivan mikronukleusni test na različitim vrstama staničnih kultura, iako je kometski test negativan. Mutagenost CTN-a očituje se na različitim vrstama stanica samo ako se pridodaju stanični aktivatori kao npr. S9-mix. Mehanizam toksičnosti CTN-a nije potpuno razjašnjen pa još uvijek traje znanstvena rasprava je li njegova toksičnost i genotoksičnost posljedica oksidacijskog stresa ili povećane permeabilnosti mitohondrijskih membrana. U dostupnoj literaturi podaci o kontaminiranosti hrane i krmiva ovim mikotoksinom mnogo su rjeđi od onih za druge mikotoksine. Može se pretpostaviti da su ljudi često izloženi ovom mikotoksinu zato što ga proizvode iste plijesni koje proizvode i OTA, a one kontaminiraju hranu po cijelom svijetu. U Hrvatskoj i u zemljama Europske Unije ne postoje zakonske odredbe o dopuštenim granicama CTN-a u bilo kojoj vrsti hrane
    corecore