103 research outputs found
Intensive Rotational Grazing of Steers on Highly Erodible Land at the Adams County CRP Project
Grazing yearling steers is one way to utilize the forages required for participation in the Conservation Reserve Program (CRP) after CRP contracts expire. In 1995, a stocker-steer intensive-rotational grazing study was conducted at the CRP Research and Demonstration Project near Corning, Iowa. A similar study was carried out in 1994. Seventy-five yearling crossbred steers grazed a 65- acre pasture that had been divided into 27 paddocks using electric fencing from May 4, 1995 to September 14, 1995. During this period, the 65-acre pasture system produced 9,975 animal-days of grazing and 11,403 pounds of gain. On a per-acre basis, this translates to 153.5 animal-days of grazing and 175.4 pounds of gain. The stocking rate was constant for the entire 133- day grazing season at 1.15 steers per acre. On May 4, 1995, the beginning of the grazing season, the average weight of the steers was 495.7 pounds. By the end of the grazing trial on September 14, 1995, the average weight of the steers had increased to 647.7 pounds. The average gain per steer during the 133-day grazing period was 152 pounds, and the average daily gain per steer was 1.14 pounds. The average bodyweight of the steers during the entire grazing season was 571.7 pounds
Pasture Conditions at the Initiation of Grazing to Optimize Forage Productivity: A Progress Report
To determine environmental, soil, and sward effects at the initiation of cattle grazing in the spring on seasonal (forage accumulated during the grazing season) and cumulative (seasonal + initial forage mass) forage accumulation (FA), 15 commercial cow-calf producers from southern Iowa were selected by historical initial grazing date. At grazing initiation, twelve .25-m2 samples were hand-clipped from each pasture and sward heights (SH) measured with a falling plane meter (4.8 kg/m2) to determine initial forage mass. At each location, soil temperature and load bearing capacity (LBC) were measured and a soil sample was collected to measure pH and moisture, P, and K concentrations. Cumulative degree-days (base=3.85°C) and precipitation at grazing initiation were calculated from NOAA records. At the beginning of each month, at least three grazing exclosures were placed on each grazed pasture to determine monthly FA. SH in each exclosure was recorded, and a .25-m2 forage sample was hand-clipped proximate to each exclosure. At the end of each month, SH was recorded and .25-m2 hand-clipped forage samples from inside exclosures were obtained. In linear regressions, cumulative and seasonal SH increased with greater soil P (r2=.5049 and .5417), soil K (r2=.4675 and .4397), and initial forage mass (r2=.1984 and .2801). Seasonal SH increased with earlier initial grazing dates (r2=.1996) and less accumulated degree-days (r2=.2364). Cumulative and seasonal FA increased with earlier initial grazing dates (r2=.2106 and .3744), lower soil temperatures (r2=.2617 and.2874), and greater soil P (r2=.3489 and .2598). Cumulative FA increased with greater soil K (r2=.4675). In quadratic regressions, cumulative and seasonal SH were correlated to soil P (r2=.6310 and .5310) and soil K (r2=.5095 and.4401). Cumulative and seasonal FA were correlated to degree days (r2=.3630 and.4013) and initial grazing date (r2=.3425 and .4088). Cumulative FA was correlated to soil P (r2=.3539), and seasonal FA was correlated to soil moisture (r2=.3688)
Animal Performance, Storage Losses and Feasibility of Ensiling a Mixture of Tub Ground Low Quality Hay and Wet Distillers’ Grains for Growing Cattle
This study was designed to evaluate long term storage options for wet distillers’ grains including storage losses and performance of backgrounding calves. Thirty six tons of wet distillers’ grains were mixed by mixer wagon with 9 tons of tub ground fescue hay in August of 2007. This mixture packed and stored in a bunker silo, covered with plastic and stored until December at the ISU Beef Nutrition Farm. The mixture was fed to growing cattle and compared to the same feeds mixed daily, and also conventional feeds for a 112 day trial. Performance of all treatments exceeded projections, averaging approximately 3 pounds per day. There were no differences in daily gain or feed conversion among treatments, although cattle fed WDG consumed less feed. Sulfur content of the WDG containing diets exceeded .5% of the diet dry matter. Storage losses were 10.9% for the bunker-stored mixture
Critical Control Points for Profitability in the Cow-Calf Enterprise
Financial, economic, and biological data collected from cow-calf producers who participated in the Illinois and Iowa Standardized Performance Analysis (SPA) programs were used in this study. Data used were collected for the 1996 through 1999 calendar years, with each herd within year representing one observation. This resulted in a final database of 225 observations (117 from Iowa and 108 from Illinois) from commercial herds with a range in size from 20 to 373 cows. Two analyses were conducted, one utilizing financial cost of production data, the other economic cost of production data. Each observation was analyzed as the difference from the mean for that given year. The independent variable utilized in both the financial and economic models as an indicator of profit was return to unpaid labor and management per cow (RLM). Used as dependent variables were the five factors that make up total annual cow cost: feed cost, operating cost, depreciation cost, capital charge, and hired labor, all on an annual cost per cow basis. In the economic analysis, family labor was also included. Production factors evaluated as dependent variables in both models were calf weight, calf price, cull weight, cull price, weaning percentage, and calving distribution. Herd size and investment were also analyzed. All financial factors analyzed were significantly correlated to RLM (P \u3c .10) except cull weight, and cull price. All economic factors analyzed were significantly correlated to RLM (P \u3c .10) except calf weight, cull weight and cull price. Results of the financial prediction equation indicate that there are eight measurements capable of explaining over 82 percent of the farm-to-farm variation in RLM. Feed cost is the overriding factor driving RLM in both the financial and economic stepwise regression analyses. In both analyses over 50 percent of the herd-to-herd variation in RLM could be explained by feed cost. Financial feed cost is correlated (P \u3c .001) to operating cost, depreciation cost, and investment. Economic feed cost is correlated (P \u3c .001) with investment and operating cost, as well as capital charge. Operating cost, depreciation, and capital charge were all negatively correlated (P \u3c .10) to herd size, and positively correlated (P \u3c .01) to feed cost in both analyses. Operating costs were positively correlated with capital charge and investment (P \u3c .01) in both analyses. In the financial regression model, depreciation cost was the second critical factor explaining almost 9 percent of the herd-to-herd variation in RLM followed by operating cost (5 percent). Calf weight had a greater impact than calf price on RLM in both the financial and economic regression models. Calf weight was the fourth indicator of RLM in the financial model and was similar in magnitude to operating cost. Investment was not a significant variable in either regression model; however, it was highly correlated to a number of the significant cost variables including feed cost, depreciation cost, and operating cost (P \u3c .001, financial; P \u3c .10, economic). Cost factors were far more influential in driving RLM than production, reproduction, or producer controlled marketing factors. Of these cost factors, feed cost had by far the largest impact. As producers focus attention on factors that affect the profitability of the operation, feed cost is the most critical control point because it was responsible for over 50 percent of the herd-to-herd variation in profit
Integrating the Use of Spring- and Fall-Calving Beef Cows in a Year-round Grazing System (A Progress Report)
Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems
Evaluation of Year-round Forage Management Systems for Spring- and Fall-Calving Beef Cows (A Progress Report)
A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P \u3e .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P \u3c .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P \u3c .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively
Integration of Year-round Forage Management Systems for Spring-calving and Fall-calving Beef Cows (A Progress Report)
Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P \u3c .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P \u3e .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P \u3c .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P \u3c .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P \u3e .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P \u3e .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P \u3c .05)
Recommended from our members
MP3 - A meteorology and physical properties package to explore air-sea interaction on Titan
The exchange of mass, heat and momentum at the air:sea interface are profound influences on the terrestrial environment, affecting the intensity of hurricanes, the size of waves and lake-effect precipitation. Titan presents us with an opportunity to study these processes in a novel physical context, with a different sea, atmosphere and gravity. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer [1,2]) is an integrated suite of small, simple sensors that combines the function of traditional meteorology packages with liquid physical properties and depth-sounding : these latter functions follow the concept of - and indeed use spare elements from - the Huygens Surface Science Package (SSP,[3]). However, unlike Huygens’ brief and dynamic 3 hours of measurement, in TiME’s 6-Titan-day (96 Earth day) nominal mission enabled by radioisotope power, MP3 will have an unprecedented long-term measurement opportunity in one of the most evocative environments in the solar system, Titan’s sea Ligeia Mare
Determination of early summer pasture conditions to optimize forage and calf productivity and profitability
Forages can be valuable elements in a sustainable production system. The date when animals are first allowed to graze on pastures can impact the quality and amount of forages available. This study explored various factors that influence successful grazing
A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome.
Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets. We performed RNA sequencing of hypothalamus from individuals with Prader-Willi syndrome (PWS), a genetic obesity syndrome characterized by severe hyperphagia. We found that upregulated genes overlap with the transcriptome of mouse Agrp neurons that signal hunger, while downregulated genes overlap with the expression profile of Pomc neurons activated by feeding. Downregulated genes are expressed mainly in neuronal cells and contribute to neurogenesis, neurotransmitter release, and synaptic plasticity, while upregulated, predominantly microglial genes are involved in inflammatory responses. This transcriptional signature may be mediated by reduced brain-derived neurotrophic factor expression. Additionally, we implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS. Transcriptomic analysis of the human hypothalamus may identify neural mechanisms involved in energy homeostasis and potential therapeutic targets for weight loss
- …