30 research outputs found

    A Design Methodology for Distributed Control Systems to Optimize Performance in the Presence of Time Delays

    Full text link
    When a control system is implemented in a distributed fashion, with multiple processors communicating over a network, both the communication delays associated with the network and the computation delays associated with the processing time can degrade the system's performance. In this case, the performance of the system may depend not only on the performance of the individual components but also on their interaction and cooperation. The approach taken in this paper assumes that the control has been designed without taking into account the network architecture. A theoretical framework is presented which allows the effect of time delays on the mechanical performance of the system to be precisely modeled, and these models are used to determine the optimal network architecture for the given control system. A design example of a two-axis contouring system is presented. 1Introduction and Motivation From monolithic, centralized control algorithms, there is an increasing trend towards decentra..

    On a Rare Cercaria, Cercaria soparkari

    Full text link

    Trading Computation for Bandwidth: Reducing Communication in Distributed Control Systems

    Full text link
    This paper describes a new framework for distributed control systems in which estimators are used at each node to estimate the values of the outputs at the other nodes. The estimated values are then used to compute the control algorithms at each node. When the estimated value deviates from the true value by more than a pre-specified tolerance, the actual value is broadcast to the rest of the system; all of the estimators are then updated to the current value. By using the estimated values instead of true value at every node, a significant savings in the required bandwidth is achieved, allowing large-scale distributed control systems to be implemented effectively. The stability, performance, and expected communication frequency of the reduced communication system are analyzed in detail. Simulation and experimental results validating the effectiveness and communication savings of the framework are also presented.

    Salivary glucose concentration exhibits threshold kinetics in normal-weight, overweight, and obese children

    Full text link
    Mor-Li Hartman,1 J Max Goodson,1 Roula Barake,2 Osama Alsmadi,3 Sabiha Al-Mutawa,4 Jitendra Ariga,4 Pramod Soparkar,1 Jawad Behbehani,5 Kazem Behbehani,6 Francine Welty7 1Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA; 2Department of Nutrition, The Dasman Diabetes Institute, Dasman, Kuwait; 3Genome Center, The Dasman Diabetes Institute, Dasman, Kuwait; 4Ministry of Health, Kuwait City, Kuwait; 5Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait; 6The Dasman Diabetes Institute, Dasman, Kuwait; 7Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA Background: Metabolic syndrome in childhood predicts the development of cardiovascular disease and type 2 diabetes (T2D) in adulthood. Testing for features of metabolic syndrome, such as fasting plasma glucose concentration, requires blood sampling which can be difficult in children. Here we evaluated salivary glucose concentration as a surrogate measurement for plasma glucose concentration in 11-year-old US children. Methods: Children from Portland, Maine, and Cambridge, Massachusetts, with a mean age of 10.6±0.2 years provided 6-hour fasting samples of both blood and whole saliva. Salivary glucose levels were measured with a high-sensitivity assay (sensitivity =0.002 mg/dL). Plasma glucose levels were determined by a commercial clinical laboratory. Blood pressure, salivary flow rate, height, and weight were also measured. Results: Of the 65 children enrolled, there were two underweight children (3.1%), 30 normal-weight children (46.2%), 12 overweight children (18.4%), and 21 obese children (32.3%). The mean overall glucose concentrations were 0.11±0.02 mg/dL in saliva and 86.3±0.8 mg/dL in plasma, and these did not differ significantly by body–weight groups. By regression analysis, the plasma concentration equaled 13.5 times the saliva concentration, with a threshold level of 84.8 mg/dL. Salivary glucose values less than threshold plasma concentration were essentially zero. Diagnostic analysis indicated a positive predictive value of 50%, a negative predictive value of 90%, and a sensitivity and specificity both of approximately 75%. The salivary glucose concentration did not vary with saliva flow rate. Conclusion: Taking into account the threshold response characteristics of the salivary glucose concentration response, these results suggest that testing salivary glucose levels may be useful as a screening assay for high fasting plasma glucose levels. The low false positive value is important to assure a low fraction of missed diagnoses. Keywords: saliva, salivary glucose, plasma glucose, childre
    corecore