807 research outputs found

    Numerical verification of universality for the Anderson transition

    Full text link
    We analyze the scaling behavior of the higher Lyapunov exponents at the Anderson transition. We estimate the critical exponent and verify its universality and that of the critical conductance distribution for box, Gaussian and Lorentzian distributions of the random potential

    Critical exponent for the quantum spin Hall transition in Z_2 network model

    Full text link
    We have estimated the critical exponent describing the divergence of the localization length at the metal-quantum spin Hall insulator transition. The critical exponent for the metal-ordinary insulator transition in quantum spin Hall systems is known to be consistent with that of topologically trivial symplectic systems. However, the precise estimation of the critical exponent for the metal-quantum spin Hall insulator transition proved to be problematic because of the existence, in this case, of edge states in the localized phase. We have overcome this difficulty by analyzing the second smallest positive Lyapunov exponent instead of the smallest positive Lyapunov exponent. We find a value for the critical exponent ν=2.73±0.02\nu=2.73 \pm 0.02 that is consistent with that for topologically trivial symplectic systems.Comment: 5 pages, 4 figures, submitted to the proceedings of Localisation 201

    Scaling of the conductance distribution near the Anderson transition

    Full text link
    The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition

    Anderson transition in the three dimensional symplectic universality class

    Full text link
    We study the Anderson transition in the SU(2) model and the Ando model. We report a new precise estimate of the critical exponent for the symplectic universality class of the Anderson transition. We also report numerical estimation of the β\beta function.Comment: 4 pages, 5 figure

    Topology dependent quantities at the Anderson transition

    Full text link
    The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions

    Transport properties in network models with perfectly conducting channels

    Full text link
    We study the transport properties of disordered electron systems that contain perfectly conducting channels. Two quantum network models that belong to different universality classes, unitary and symplectic, are simulated numerically. The perfectly conducting channel in the unitary class can be realized in zigzag graphene nano-ribbons and that in the symplectic class is known to appear in metallic carbon nanotubes. The existence of a perfectly conducting channel leads to novel conductance distribution functions and a shortening of the conductance decay length.Comment: 4 pages, 6 figures, proceedings of LT2

    Conductance distributions in disordered quantum spin-Hall systems

    Full text link
    We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from that at the metal-ordinary insulator transition. Thus the critical conductance distribution is sensitive not only to the boundary condition but also to the presence of edge states in the adjacent insulating phase. We have also calculated the point-contact conductance. Even when the two-terminal conductance is approximately quantized, we find large fluctuations in the point-contact conductance. Furthermore, we have found a semi-circular relation between the average of the point-contact conductance and its fluctuation.Comment: 9 pages, 17 figures, published versio

    Chalker-Coddington model described by an S-matrix with odd dimensions

    Full text link
    The Chalker-Coddington network model is often used to describe the transport properties of quantum Hall systems. By adding an extra channel to this model, we introduce an asymmetric model with profoundly different transport properties. We present a numerical analysis of these transport properties and consider the relevance for realistic systems.Comment: 7 pages, 4 figures. To appear in the EP2DS-17 proceeding

    Universality of the critical conductance distribution in various dimensions

    Full text link
    We study numerically the metal - insulator transition in the Anderson model on various lattices with dimension 2<d42 < d \le 4 (bifractals and Euclidian lattices). The critical exponent ν\nu and the critical conductance distribution are calculated. We confirm that ν\nu depends only on the {\it spectral} dimension. The other parameters - critical disorder, critical conductance distribution and conductance cummulants - depend also on lattice topology. Thus only qualitative comparison with theoretical formulae for dimension dependence of the cummulants is possible
    corecore