119 research outputs found
Interplay Between Mitophagy and Apoptosis Defines a Cell Fate Upon Co-treatment of Breast Cancer Cells With a Recombinant Fragment of Human κ-Casein and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
A recombinant fragment of human k-Casein, termed RL2, induces cell death of breast
cancer cells; however,molecularmechanisms of RL2-mediated cell death have remained
largely unknown. In the current study, we have decoded the molecular mechanism of the
RL2-mediated cell death and found that RL2 acts via the induction of mitophagy. This
was monitored by the loss of adenosine triphosphate production, LC3B-II generation,
and upregulation of BNIP3 and BNIP3L/NIX, as well as phosphatase and tensin
homolog-induced kinase 1. Moreover, we have analyzed the cross talk of this pathway
with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis
upon combinatorial treatment with RL2 and TRAIL. Strikingly, we found two opposite
effects of this co-treatment. RL2 had inhibitory effects on TRAIL-induced cell death upon
short-term co-stimulation. In particular, RL2 treatment blocked TRAIL-mediated caspase
activation, cell viability loss, and apoptosis, which was mediated via the downregulation
of the core proapoptotic regulators. Contrary to short-termco-treatment, upon long-term
co-stimulation, RL2 sensitized the cells toward TRAIL-induced cell death; the latter
observation provides the basis for the development of therapeutic approaches in breast
cancer cells. Collectively, our findings have important implications for cancer therapy
and reveal the molecular switches of the cross talk between RL2-induced mitophagy
and TRAIL-mediated apoptosis.DFG-Publikationsfonds 202
Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair
Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base
Multiple Scale Reorganization of Electrostatic Complexes of PolyStyrene Sulfonate and Lysozyme
We report on a SANS investigation into the potential for these structural
reorganization of complexes composed of lysozyme and small PSS chains of
opposite charge if the physicochemical conditions of the solutions are changed
after their formation. Mixtures of solutions of lysozyme and PSS with high
matter content and with an introduced charge ratio [-]/[+]intro close to the
electrostatic stoichiometry, lead to suspensions that are macroscopically
stable. They are composed at local scale of dense globular primary complexes of
radius ~ 100 {\AA}; at a higher scale they are organized fractally with a
dimension 2.1. We first show that the dilution of the solution of complexes,
all other physicochemical parameters remaining constant, induces a macroscopic
destabilization of the solutions but does not modify the structure of the
complexes at submicronic scales. This suggests that the colloidal stability of
the complexes can be explained by the interlocking of the fractal aggregates in
a network at high concentration: dilution does not break the local aggregate
structure but it does destroy the network. We show, secondly, that the addition
of salt does not change the almost frozen inner structure of the cores of the
primary complexes, although it does encourage growth of the complexes; these
coalesce into larger complexes as salt has partially screened the electrostatic
repulsions between two primary complexes. These larger primary complexes remain
aggregated with a fractal dimension of 2.1. Thirdly, we show that the addition
of PSS chains up to [-]/[+]intro ~ 20, after the formation of the primary
complex with a [-]/[+]intro close to 1, only slightly changes the inner
structure of the primary complexes. Moreover, in contrast to the synthesis
achieved in the one-step mixing procedure where the proteins are unfolded for a
range of [-]/[+]intro, the native conformation of the proteins is preserved
inside the frozen core
Internet addiction, fatigue, and sleep problems among adolescent students: a large-scale study
Aim: The aim of the present study was to examine the association between Internet Addiction (IA), fatigue, and sleep problems among university students.
Methods: A total of 3,000 Turkish students aged 18 to 25 years were approached and 2,350 students (78.3%) participated in this cross-sectional study from April 2017 to September 2017 in public and private universities in Istanbul. Data were collected via a structured questionnaire including socio-demographic details, lifestyle and dietary habits, Internet Addiction Test (IAT), Fatigue Scale, and Epworth Sleepiness Scale [ESS]. Descriptive statistics, multivariate and factorial analyses were performed.
Results: The overall prevalence of IA among the studied population was 17.7%. There were significant differences between gender, family income, father’s occupation, school performance, frequency and duration of watching television, physical activity, internet use duration, and sleep duration (all p<0.001). Significant differences were also found between participants with IA and those without IA in having headaches, blurred vision, double vision, hurting eyes, hearing problems, and eating fast food frequently (all p<0.001). Using multivariate regression analysis, the duration of internet use, physical and mental symptoms, headache, hurting eyes, tired eyes, hearing problems and ESS scores were significantly associated with (and primary predictors of) IA.
Conclusion: The present study demonstrated that IA was associated with poor dietary habits, sleep problems, and fatigue symptoms
Autosomal dominant polycystic kidney disease with diffuse proliferative glomerulonephritis - an unusual association: a case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>Autosomal dominant polycystic kidney disease is an inherited disorder that is characterized by the development and growth of cysts in the kidneys and other organs. Urinary protein excretion is usually less than 1 g/24 hours in autosomal dominant polycystic kidney disease, and an association of nephrotic syndrome with this condition is considered rare. There are only anecdotal case reports of autosomal dominant polycystic kidney disease associated with nephrotic syndrome, with focal segmental glomerulosclerosis being the most commonly reported histopathological diagnosis. Nephrotic-range proteinuria in the presence of autosomal dominant polycystic kidney disease, with or without an accompanying decline in renal function, should be investigated by open renal biopsy to exclude coexisting glomerular disease. To the best of our knowledge, this is the first case of autosomal dominant polycystic kidney disease with histologically proven diffuse proliferative glomerulonephritis presenting with nephrotic-range proteinuria. No other reports of this could be found in a global electronic search of the literature.</p> <p>Case presentation</p> <p>We report the case of a 35-year-old Indo-Aryan man with autosomal dominant polycystic kidney disease associated with nephrotic syndrome and a concomitant decline in his glomerular filtration rate. Open renal biopsy revealed diffuse proliferative glomerulonephritis. An accurate diagnosis enabled us to manage him conservatively with a successful outcome, without the use of corticosteroid which is the standard treatment and the drug most commonly used to treat nephrotic syndrome empirically.</p> <p>Conclusion</p> <p>Despite the reluctance of physicians to carry out a renal biopsy on patients with autosomal dominant polycystic kidney disease, our case supports the idea that renal biopsy is needed in patients with polycystic kidney disease with nephrotic-range proteinuria to make an accurate diagnosis. It also illustrates the importance of open renal biopsy in planning appropriate treatment for patients with autosomal dominant polycystic kidney disease with nephrotic-range proteinuria. The treatment for various histological subtypes leading to nephrotic syndrome is different, and in this modern era we should practice evidence-based medicine and should avoid empirical therapy with its associated adverse effects.</p
Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease
<p>Abstract</p> <p>Background</p> <p>Increased arterial stiffness is associated with mortality in patients with chronic kidney disease. Cardiovascular magnetic resonance (CMR) permits assessment of the central arteries to measure aortic function.</p> <p>Methods</p> <p>We studied the relationship between central haemodynamics and outcome using CMR in 144 chronic kidney disease patients with estimated glomerular filtration rate <15 ml/min (110 on dialysis). Aortic distensibilty and volumetric arterial strain were calculated from cross sectional aortic volume and pulse pressure measured during the scan.</p> <p>Results</p> <p>Median follow up after the scan was 24 months. There were no significant differences in aortic distensibilty or aortic volumetric arterial strain between pre-dialysis and dialysis patients. Aortic distensibilty and volumetric arterial strain negatively correlated with age. Aortic distensibilty and volumetric arterial strain were lower in diabetics, patients with ischaemic heart disease and peripheral vascular disease. During follow up there were 20 deaths. Patients who died had lower aortic distensibilty than survivors. In a survival analysis, diabetes, systolic blood pressure and aortic distensibilty were independent predictors of mortality. There were 12 non-fatal cardiovascular events during follow up. Analysing the combined end point of death or a vascular event, diabetes, aortic distensibilty and volumetric arterial strain were predictors of events.</p> <p>Conclusion</p> <p>Deranged vascular function measured with CMR correlates with cardiovascular risk factors and predicts outcome. CMR measures of vascular function are potential targets for interventions to reduce cardiovascular risk.</p
Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene
We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins β-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer PAA21-b-PAPEO14 (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), with a negatively charged PAA block and a neutral PAPEO block and a positively charged homopolymer P2MVPI (poly(N-methyl 2-vinyl pyridinium iodide). In solution, these C3Ms partly disintegrate at salt concentrations between 50 and 100 mM NaCl. Adsorption of C3Ms and proteins has been studied with fixed-angle optical reflectometry, at salt concentrations ranging from 1 to 100 mM NaCl. In comparison with the adsorption of PAA21-b-PAPEO14 alone adsorption of C3Ms significantly increases the amount of PAA21-b-PAPEO14 on the surface. This results in a higher surface density of PEO chains. The stability of the C3M coatings and their influence on protein adsorption are determined by the composition and the stability of the C3Ms in solution. A C3M-PAPEO14/P2MVPI43 coating strongly suppresses the adsorption of all proteins on silica and polystyrene. The reduction of protein adsorption is the highest at 100 mM NaCl (>90%). The adsorbed C3M-PAPEO14/P2MVPI43 layer is partly removed from the surface upon exposure to an excess of β-lactoglobulin solution, due to formation of soluble aggregates consisting of β-lactoglobulin and P2MVPI43. In contrast, C3M-PAPEO14/P2MVPI228 which has a fivefold longer cationic block enhances adsorption of the negatively charged proteins on both surfaces at salt concentrations above 1 mM NaCl. A single PAA21-b-PAPEO14 layer causes only a moderate reduction of protein adsorption
- …