34,385 research outputs found

    11B^{11}B NMR and Relaxation in MgB2MgB_2 Superconductor

    Full text link
    11B^{11}B NMR and nuclear spin-lattice relaxation rate (NSLR) are reported at 7.2 Tesla and 1.4 Tesla in powder samples of the intermetallic compound MgB2MgB_2 with superconducting transition temperature in zero field TcT_c = 39.2 K. From the first order quadrupole perturbed NMR specrum a quadrupole coupling frequency of 835 ±\pm 5 kHz is obtained. The Knight shift is very small and it decreases to zero in the superconducting phase. The NSLR follows a linear law with T1TT_1T = 165 ±\pm 10 (sec K) . The results in the normal phase indicate a negligible ss-character of the wave function of the conduction electrons at the Fermi level. Below TcT_c the NSLR is strongly field dependent indicating the presence of an important contribution related to the density and the thermal motion of flux lines. No coherence peak is observed at the lower field investigated (1.4 T)

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    Quasi-particle scattering and protected nature of topological states in a parent topological insulator Bi2_2Se3_3

    Full text link
    We report on angle resolved photoemission spectroscopic studies on a parent topological insulator (TI), Bi2_2Se3_3. The line width of the spectral function (inverse of the quasi-particle lifetime) of the topological metallic (TM) states shows an anomalous behavior. This behavior can be reasonably accounted for by assuming decay of the quasi-particles predominantly into bulk electronic states through electron-electron interaction and defect scattering. Studies on aged surfaces reveal that topological metallic states are very much unaffected by the potentials created by adsorbed atoms or molecules on the surface, indicating that topological states could be indeed protected against weak perturbations.Comment: accepted for publication in Phys. Rev. B(R

    Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlOx/Pt structures

    Full text link
    We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagnetic electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.Comment: 4 pages, 5 figures, to be published in Phys. Rev. Let

    Spin/Orbital Pattern-Dependent Polaron Absorption in Nd(1-x)Sr(x)MnO3

    Full text link
    We investigated optical properties of Nd(1-x)Sr(x)MnO3 (x= 0.40, 0.50, 0.55, and 0.65) single crystals. In the spin/orbital disordered state, their conductivity spectra look quite similar, and the strength of the mid-infrared absorption peak is proportional to x(1-x) consistent with the polaron picture. As temperature lowers, the Nd(1-x)Sr(x)MnO3 samples enter into various spin/orbital ordered states, whose optical responses are quite different. These optical responses can be explained by the spin/orbital ordering pattern-dependent polaron hopping.Comment: 3 figures (gzipped

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
    corecore