2 research outputs found

    Hybrid Navigation Decision Control Mechanism for Intelligent Wheel-Chair

    No full text
    The continuous rising of the elderly/disabled population has created a requirement for assistive robotics devices to counter the lack of trustworthy servants. Intelligent Wheelchairs are developed for that particular purpose. Intelligent Wheelchairs differ depending on the interactive modality and most commonly found modalities are speech-controlled. Since these are assistive devices that need to act as human companions, it is necessary to have a dialogue between the device and the user. Even though the wheelchair is fully automated, the user should have control over it at some point. However, this exchange of control should be intelligent and transitions need to be executed in order to safeguard the user. Therefore the purpose of this paper is to propose an intelligent system that would navigate an intelligent voice-controlled wheelchair facilitating the intelligent exchange of control between the user and the wheelchair. This control is not simultaneous and one can override the other only when navigation could lead to collisions. In the proposed method, users can control the wheelchair using fixed vocal commands, and execution of those commands will be performed using the spatial and control parameters. Control of the wheelchair will be exchanged between the user and the wheelchair itself considering specific parameters such as obstacle distance, collision time, the velocity of the wheelchair among others. User control mode has 5 definite vocal commands with classifiers to identify any navigation command into the command model and considers uncertain terms such as ‘little’ and ‘hard’ for ‘Turn’ commands. Command classification had produced a Cohen’s Kappa value of 0.9462 and the classifier for the uncertain terms had produced a Cohen’s Kappa value of 0.7325. Both were acceptable values for those particular classifications. As per the experiment results, the proposed system reduced the vocal command frequency and risk of collisions through proper control of the velocity levels and intelligent exchange of control at given locations

    An Intelligent Gesture Classification Model for Domestic Wheelchair Navigation with Gesture Variance Compensation

    No full text
    Elderly and disabled population is rapidly increasing. It is important to uplift their living standards by improving the confidence towards daily activities. Navigation is an important task, most elderly and disabled people need assistance with. Replacing human assistance with an intelligent system which is capable of assisting human navigation via wheelchair systems is an effective solution. Hand gestures are often used in navigation systems. However, those systems do not possess the capability to accurately identify gesture variances. Therefore, this paper proposes a method to create an intelligent gesture classification system with a gesture model which was built based on human studies for every essential motion in domestic navigation with hand gesture variance compensation capability. Experiments have been carried out to evaluate user remembering and recalling capability and adaptability towards the gesture model. Dynamic Gesture Identification Module (DGIM), Static Gesture Identification Module (SGIM), and Gesture Clarifier (GC) have been introduced in order to identify gesture commands. The proposed system was analyzed for system accuracy and precision using results of the experiments conducted with human users. Accuracy of the intelligent system was determined with the use of confusion matrix. Further, those results were analyzed using Cohen’s kappa analysis in which overall accuracy, misclassification rate, precision, and Cohen’s kappa values were calculated
    corecore