344 research outputs found

    Photon and electron spectra in hot and dense QED

    Get PDF
    Photon and electron spectra in hot and dense QED are found in the high temperature limit for all |\q| using the Feynman gauge and the one-loop self-energy. All spectra are split by the medium and their branches develop the gap (the dynamical mass) at zero momentum. The photon spectrum has two branches (longitudinal and transverse) with the common mass; but electron spectrum is split on four branches which are well-separated for any |\q| including their |\q|=0 limits (their effective masses). These masses and the photon thermal mass are calculated explicitly and the different limits of spectrum branches are established in detail. The gauge invariance of the high-temperature spectra is briefly discussed.Comment: 9 pages, latex, no figure

    On the Infrared Behavior of the Pressure in Thermal Field Theories

    Full text link
    We study non-perturbatively, via the Schwinger-Dyson equations, the leading infrared behavior of the pressure in the ladder approximation. This problem is discussed firstly in the context of a thermal scalar field theory, and the analysis is then extended to the Yang-Mills theory at high temperatures. Using the Feynman gauge, we find a system of two coupled integral equations for the gluon and ghost self-energies, which is solved analytically. The solutions of these equations show that the contributions to the pressure, when calculated in the ladder approximation, are finite in the infrared domain.Comment: 20 pages plus 4 figures available by request, IFUSP/P-100

    Collective Excitations of Massive Dirac Particles in Hot and Dense Medium

    Get PDF
    The one-loop dispersion equation which defines the collective excitations of the massive Dirac particles in hot and dense quark-gluon medium is obtained in the high temperature limit for the case m<<Tm<<T and solved explicitly for all |\q| when μ=0\mu=0. Four well-separated spectrum branches (quasi-particle and quasi-hole excitations) are found and their behaviors for the small and large |\q| are investigated. All calculations are performed using the temperature Green function technique and fixing the Feynman gauge. The gauge dependency of the spectra found are briefly discussed.Comment: 7 pages, latex, no figure

    One-particle and collective electron spectra in hot and dense QED and their gauge dependence

    Get PDF
    The one-particle electron spectrum is found for hot and dense QED and its properties are investigated in comparison with the collective spectrum. It is shown that the one-particle spectrum (in any case its zero momentum limit) is gauge invariant, but the collective spectrum, being qualitatively different, is always gauge dependent. The exception is the case m,μ=0m,\mu=0 for which the collective spectrum long wavelength limit demonstrates the gauge invariance as well.Comment: 9 pages, latex, no figure

    Soliton absorption spectroscopy

    Full text link
    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique.Comment: 9 pages, 7 figures

    Polarization tensor of charged gluons in color magnetic background field at finite temperature

    Full text link
    We calculate the polarization tensor of charged gluons in a Abelian homogeneous magnetic background field at finite temperature in one loop order Lorentz background field gauge in full generality. Thereby we first determine the ten independent tensor structures. For the calculation of the corresponding form factors we use the Schwinger representation and represent form factors as double parametric integrals and a sum resulting from the Matsubara formalism used. The integrands are given explicitly in terms of hyperbolic trigonometric functions. Like in the case of neutral gluons, the polarization tensor is not transversal. Out of the tensor structures, seven are transversal and three are not. The nontransversal part follows explicitly from our calculations.Comment: 28 pages, submitted to Phys.Rev.

    Ring diagrams and electroweak phase transition in a magnetic field

    Full text link
    Electroweak phase transition in a magnetic field is investigated within the one-loop and ring diagram contributions to the effective potential in the minimal Standard Model. All fundamental fermions and bosons are included with their actual values of masses and the Higgs boson mass is considered in the range 75GeVmH115GeV75 GeV \leq m_H \leq 115 GeV. The effective potential is real at sufficiently high temperature. The important role of fermions and WW-bosons in symmetry behaviour is observed. It is found that the phase transition for the field strengths 1023102410^{23} - 10^{24}G is of first order but the baryogenesis condition is not satisfied. The comparison with the hypermagnetic field case is done.Comment: 16 pages, Latex, changed for a mistake in the numerical par

    Invariant measure in hot gauge theories

    Get PDF
    We investigate properties of the invariant measure for the A0A_0 gauge field in finite temperature gauge theories both on the lattice and in the continuum theory. We have found the cancellation of the naive measure in both cases. The result is quite general and holds at any finite temperature. We demonstrate, however, that there is no cancellation at any temperature for the invariant measure contribution understood as Z(N) symmetrical distribution of gauge field configurations. The spontaneous breakdown of Z(N) global symmetry is entirely due to the potential energy term of the gluonic interaction in the effective potential. The effects of this measure on the effective action, mechanism of confinement and A0A_0 condensation are discussed.Comment: Latex file, 65.5kB, no figure

    Non-Analytic Vertex Renormalization of a Bose Gas at Finite Temperature

    Full text link
    We derive the flow equations for the symmetry unbroken phase of a dilute 3-dimensional Bose gas. We point out that the flow equation for the interaction contains parts which are non-analytic at the origin of the frequency-momentum space. We examine the way this non-analyticity affects the fixed point of the system of the flow equations and shifts the value of the critical exponent for the correlation length closer to the experimental result in comparison with previous work where the non-analyticity was neglected. Finally, we emphasize the purely thermal nature of this non-analytic behaviour comparing our approach to a previous work where non-analyticity was studied in the context of renormalization at zero temperature.Comment: 21 pages, 4 figure
    corecore