500 research outputs found

    Pairing symmetry signatures of T1 in superconducting ferromagnets

    Full text link
    We study the nuclear relaxation rate 1/T1 as a function of temperature for a superconducting-ferromagnetic coexistent system using a p-wave triplet model for the superconducting pairing symmetry. This calculation is contrasted with a singlet s-wave one done previously, and we see for the s-wave case that there is a Hebel-Slichter peak, albeit reduced due to the magnetization, and no peak for the p-wave case. We then compare these results to a nuclear relaxation rate experiment on UGe2 to determine the possible pairing symmetry signatures in that material. It is seen that the experimental data is inconclusive to rule out the possibility of s-wave pairing in UGe2UGe_{2}.Comment: 4 pages, 4 figure

    Weakly correlated electrons on a square lattice: a renormalization group theory

    Full text link
    We study the weakly interacting Hubbard model on the square lattice using a one-loop renormalization group approach. The transition temperature T_c between the metallic and (nearly) ordered states is found. In the parquet regime, (T_c >> |mu|), the dominant correlations at temperatures below T_c are antiferromagnetic while in the BCS regime (T_c << |mu|) at T_c the d-wave singlet pairing susceptibility is most divergent.Comment: 12 pages, REVTEX, 3 figures included, submitted to Phys. Rev. Let

    Dynamic Exponent of t-J and t-J-W Model

    Full text link
    Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, WW. For the ordinary t-J model with WW=0, the scaling of the Drude weight Dδ2D \propto \delta^2 for small doping concentration δ\delta is obtained, which indicates anomalous dynamic exponent zz=4 of the Mott transition. When WW is switched on, the dynamic exponent recovers its conventional value zz=2. This corresponds to an incoherent-to-coherent transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc. Jpn. vol.67, No.6 (1998
    corecore