3,819 research outputs found
Amorphization of Vortex Matter and Reentrant Peak Effect in YBaCuO
The peak effect (PE) has been observed in a twinned crystal of
YBaCuO for Hc in the low field range, close to
the zero field superconducting transition temperature (T(0)) . A sharp
depinning transition succeeds the peak temperature T of the PE. The PE
phenomenon broadens and its internal structure smoothens out as the field is
increased or decreased beyond the interval between 250 Oe and 1000 Oe.
Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus
of the T(H) values shows a reentrant characteristic with a nose like
feature located at T(H)/T(0)0.99 and H100 Oe (where
the FLL constant apenetration depth ). The upper part of
the PE curve (0.5 kOeH10 kOe) can be fitted to a melting scenario with
the Lindemann number c0.25. The vortex phase diagram near T(0)
determined from the characteristic features of the PE in
YBaCuO(Hc) bears close resemblance to that in
the 2H-NbSe system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure
A number conserving theory for topologically protected degeneracy in one-dimensional fermions
Semiconducting nanowires in proximity to superconductors are among promising
candidates to search for Majorana fermions and topologically protected
degeneracies which may ultimately be used as building blocks for topological
quantum computers. The prediction of neutral Majorana fermions in the
proximity-induced superconducting systems ignores number-conservation and thus
leaves open the conceptual question of how a topological degeneracy that is
robust to all local perturbations arises in a number-conserving system. In this
work, we study how local attractive interactions generate a topological
ground-state near-degeneracy in a quasi one-dimensional superfluid using
bosonization of the fermions. The local attractive interactions opens a
topological quasiparticle gap in the odd channel wires (with more than one
channel) with end Majorana modes associated with a topological near-degeneracy.
We explicitly study the robustness of the topological degeneracy to local
perturbations and find that such local perturbations result in quantum phase
slips which split of the topological degeneracy by an amount that does not
decrease exponentially with the length of the wire, but still decreases rapidly
if the number of channels is large. Therefore a bulk superconductor with a
large number of channels is crucial for true topological degeneracy.Comment: 11 pages, 2 figure
High-Dimensional Topological Insulators with Quaternionic Analytic Landau Levels
We study the 3D topological insulators in the continuum by coupling spin-1/2
fermions to the Aharonov-Casher SU(2) gauge field. They exhibit flat Landau
levels in which orbital angular momentum and spin are coupled with a fixed
helicity. The 3D lowest Landau level wavefunctions exhibit the quaternionic
analyticity as a generalization of the complex analyticity of the 2D case. Each
Landau level contributes one branch of gapless helical Dirac modes to the
surface spectra, whose topological properties belong to the Z2-class. The flat
Landau levels can be generalized to an arbitrary dimension. Interaction effects
and experimental realizations are also studied
Correlation induced phonon softening in low density coupled bilayer systems
We predict a possible phonon softening instability in strongly correlated
coupled semiconductor bilayer systems. By studying the plasmon-phonon coupling
in coupled bilayer structures, we find that the renormalized acoustic phonon
frequency may be softened at a finite wave vector due to many-body local field
corrections, particularly in low density systems where correlation effects are
strong. We discuss experimental possibilities to search for this predicted
phonon softening phenomenon.Comment: 4 pages with 2 figure
Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
We calculate the electron-electron interaction induced energy-dependent
inelastic carrier relaxation rate in doped semiconductor coupled double quantum
well nanostructures within the two subband approximation at zero temperature.
In particular, we calculate, using many-body theory, the imaginary part of the
full self-energy matrix by expanding in the dynamically RPA screened Coulomb
interaction, obtaining the intrasubband and intersubband electron relaxation
rates in the ground and excited subbands as a function of electron energy. We
separate out the single particle and the collective excitation contributions,
and comment on the effects of structural asymmetry in the quantum well on the
relaxation rate. Effects of dynamical screening and Fermi statistics are
automatically included in our many body formalism rather than being
incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure
Spin mapping, phase diagram, and collective modes in double layer quantum Hall systems at
An exact spin mapping is identified to simplify the recently proposed
hard-core boson description (Demler and Das Sarma, Phys. Rev. Lett., to be
published) of the bilayer quantum Hall system at filling factor 2. The
effective spin model describes an easy-plane ferromagnet subject to an external
Zeeman field. The phase diagram of this effective model is determined exactly
and found to agree with the approximate calculation of Demler and Das Sarma,
while the Goldstone-mode spectrum, order parameter stiffness and
Kosterlitz-Thouless temperature in the canted antiferromagnetic phase are
computed approximately.Comment: 4 pages with 2 figures include
Dissipationless transport in low density bilayer systems
In a bilayer electronic system the layer index may be viewed as the
z-component of an isospin-1/2. An XY isospin-ordered ferromagnetic phase was
observed in quantum Hall systems and is predicted to exist at zero magnetic
field at low density. This phase is a superfluid for opposite currents in the
two layers. At B=0 the system is gapless but superfluidity is not destroyed by
weak disorder. In the quantum Hall case, weak disorder generates a random gauge
field which probably does not destroy superfluidity. Experimental signatures
include Coulomb drag and collective mode measurements.Comment: 4 pages, no figures, submitted to Phys. Rev. Let
Quantum Hall Phase Diagram of Second Landau-level Half-filled Bilayers: Abelian versus Non-Abelian States
The quantum Hall phase diagram of the half-filled bilayer system in the
second Landau level is studied as a function of tunneling and layer separation
using exact diagonalization. We make the striking prediction that bilayer
structures would manifest two distinct branches of incompressible fractional
quantum Hall effect (FQHE) corresponding to the Abelian 331 state (at moderate
to low tunneling and large layer separation) and the non-Abelian Pfaffian state
(at large tunneling and small layer separation). The observation of these two
FQHE branches and the quantum phase transition between them will be compelling
evidence supporting the existence of the non-Abelian Pfaffian state in the
second Landau level.Comment: 4 pages, 3 figure
Orbital Landau level dependence of the fractional quantum Hall effect in quasi-two dimensional electron layers: finite-thickness effects
The fractional quantum Hall effect (FQHE) in the second orbital Landau level
at filling factor 5/2 remains enigmatic and motivates our work. We consider the
effect of the quasi-2D nature of the experimental FQH system on a number of FQH
states (fillings 1/3, 1/5, 1/2) in the lowest, second, and third Landau levels
(LLL, SLL, TLL,) by calculating the overlap, as a function of quasi-2D layer
thickness, between the exact ground state of a model Hamiltonian and the
consensus variational wavefunctions (Laughlin wavefunction for 1/3 and 1/5 and
the Moore-Read Pfaffian wavefunction for 1/2). Using large overlap as a
stability, or FQHE robustness, criterion we find the FQHE does not occur in the
TLL (for any thickness), is the most robust for zero thickness in the LLL for
1/3 and 1/5 and for 11/5 in the SLL, and is most robust at finite-thickness
(4-5 magnetic lengths) in the SLL for the mysterious 5/2 state and the 7/3
state. No FQHE is found at 1/2 in the LLL for any thickness. We examine the
orbital effects of an in-plane (parallel) magnetic field finding its
application effectively reduces the thickness and could destroy the FQHE at 5/2
and 7/3, while enhancing it at 11/5 as well as for LLL FQHE states. The
in-plane field effects could thus be qualitatively different in the LLL and the
SLL by virtue of magneto-orbital coupling through the finite thickness effect.
In the torus geometry, we show the appearance of the threefold topological
degeneracy expected for the Pfaffian state which is enhanced by thickness
corroborating our findings from overlap calculations. Our results have
ramifications for wavefunction engineering--the possibility of creating an
optimal experimental system where the 5/2 FQHE state is more likely described
by the Pfaffian state with applications to topological quantum computing.Comment: 27 pages, 20 figures, revised version (with additional author) as
accepted for publication in Physical Review
- …