2,689,198 research outputs found

    Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape

    Full text link
    Here, cosmology of the late and future universe is obtained from f(R)f(R)-gravity with non-linear curvature terms R2R^2 and R3R^3 (RR being the Ricci scalar curvature). It is different from f(R)f(R)-dark enrgy models, where non-linear curvature terms are taken as gravitational alternative of dark energy. In the present model, neither linear nor no-linear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms in the Friedmann equation derived from f(R)f(R)-gravitational equations. It has advantage over f(R)f(R)- dark energy models in the sense that the present model satisfies WMAP results and expands as t2/3\sim t^{2/3} during matter-dominance. So, it does not have problems due to which f(R)f(R)-dark energy models are criticized. Curvature-induced dark energy, obtained here, mimics phantom. Different phases of this model, including acceleration and deceleration during phantom phase, are investigated here.It is found that expansion of the universe will stop at the age (3.87t0+694.4kyr)(3.87 t_0 + 694.4 {\rm kyr}) (t0t_0 being the present age of the universe) and after this epoch, it will contract and collapse by the time (336.87t0+694.4kyr)(336.87 t_0 + 694.4 {\rm kyr}). Further,it is shown that universe will escape predicted collapse (obtained using classical mechanics) on making quantum gravity corrections relevant near collapse time due to extremely high energy density and large curvature analogous to the state of very early universe. Interestingly, cosmological constant is also induced here, which is very small in classical domain, but very high in quantum domain.Comment: 33 page

    The Energy Distribution in a Static Spherically Symmetric Nonsingular Black Hole Space-Time

    Get PDF
    We calculate the energy distribution in a static spherically symmetric nonsingular black hole space-time by using the Tolman's energy-momentum complex. All the calculations are performed in quasi-Cartesian coordinates. The energy distribution is positive everywhere and be equal to zero at origin. We get the same result as obtained by Y-Ching Yang by using the Einstein's and Weinberg's prescriptions.Comment: 5 pages, no figure

    Semidirect Product Groups, Vacuum Alignment and Tribimaximal Neutrino Mixing

    Full text link
    The neutrino oscillation data are in very good agreement with the tribimaximal mixing pattern: \sin^2\theta_{23}=1/2, \sin^2\theta_{12}=1/3, and \sin^2\theta_{13}=0. Attempts to generate this pattern based on finite family symmetry groups typically assume that the family symmetry is broken to different subgroups in the charged lepton and the neutrino mass matrices. This leads to a technical problem, where the cross-couplings between the Higgs fields responsible for the two symmetry breaking chains force their vacuum expectation values to align, upsetting the desired breaking pattern. Here, we present a class of models based on the semidirect product group (S_3)^4 \rtimes A_4, where the lepton families belong to representations which are not faithful. In effect, the Higgs sector knows about the full symmetry while the lepton sector knows only about the A_4 factor group. This can solve the alignment problem without altering the desired properties of the family symmetry. Inclusion of quarks into the framework is straightforward, and leads to small and arbitrary CKM mixing angles. Supersymmetry is not essential for our proposal, but the model presented is easily supersymmetrized, in which case the same family symmetry solves the SUSY flavor problem.Comment: Typos fixed, 26 pages in LaTe

    Satellite observations of thought experiments close to a black hole

    Get PDF
    Since black holes are `black', methods of their identification must necessarily be indirect. Due to very special boundary condition on the horizon, the advective flow behaves in a particular way, which includes formation of centrifugal pressure dominated boundary layer or CENBOL where much of the infall energy is released and outflows are generated. The observational aspects of black holes must depend on the steady and time-dependent properties of this boundary layer. Several observational results are written down in this review which seem to support the predictions of thought experiments based on this advective accretion/outflow model. In future, when gravitational waves are detected, some other predictions of this model could be tested as well.Comment: Published in Classical and Quantum Gravity, v. 17, No. 12, p. 2427, 200

    Energy Associated with Schwarzschild Black Hole in a Magnetic Universe

    Get PDF
    In this paper we obtain the energy distribution associated with the Ernst space-time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.Comment: RevTex, 8 pages, no figures, a few points are clarified, to appear in Int. J. Mod. Phys. A. This paper is dedicated to Professor G. F. R. Ellis on the occasion of his 60th birthda
    corecore