64 research outputs found

    Splitting of doubly quantized vortices in dilute Bose-Einstein condensates

    Full text link
    We investigate the dynamics of doubly charged vortices generated in dilute Bose-Einstein condensates by using the topological phase imprinting technique. We find splitting times of such vortices and show that thermal atoms are responsible for their decay.Comment: 1 page, 1 figur

    Rate limit for photoassociation of a Bose-Einstein condensate

    Full text link
    We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density \rho and mass m, the limit is approximately 6\hbar\rho^{2/3}/m. At low temperatures this is a more stringent restriction than the unitary limit of scattering theory.Comment: 5 pgs, 18 refs., 3 figs., submitted to Phys. Rev. Let

    Noncanonical quantum optics

    Get PDF
    Modification of the right-hand-side of canonical commutation relations (CCR) naturally occurs if one considers a harmonic oscillator with indefinite frequency. Quantization of electromagnetic field by means of such a non-CCR algebra naturally removes the infinite energy of vacuum but still results in a theory which is very similar to quantum electrodynamics. An analysis of perturbation theory shows that the non-canonical theory has an automatically built-in cut-off but requires charge/mass renormalization already at the nonrelativistic level. A simple rule allowing to compare perturbative predictions of canonical and non-canonical theories is given. The notion of a unique vacuum state is replaced by a set of different vacua. Multi-photon states are defined in the standard way but depend on the choice of vacuum. Making a simplified choice of the vacuum state we estimate corrections to atomic lifetimes, probabilities of multiphoton spontaneous and stimulated emission, and the Planck law. The results are practically identical to the standard ones. Two different candidates for a free-field Hamiltonian are compared.Comment: Completely rewritten version of quant-ph/0002003v2. There are overlaps between the papers, but sections on perturbative calculations show the same problem from different sides, therefore quant-ph/0002003v2 is not replace

    Probing the classical field approximation - thermodynamics and decaying vortices

    Full text link
    We review our version of the classical field approximation to the dynamics of a finite temperature Bose gas. In the case of a periodic box potential, we investigate the role of the high momentum cut-off, essential in the method. In particular, we show that the cut-off going to infinity limit decribes the particle number going to infinity with the scattering length going to zero. In this weak interaction limit, the relative population of the condensate tends to unity. We also show that the cross-over energy, at which the probability distribution of the condensate occupation changes its character, grows with a growing scattering length. In the more physical case of the condensate in the harmonic trap we investigate the dissipative dynamics of a vortex. We compare the decay time and the velocities of the vortex with the available analytic estimates.Comment: 7 pages, 8 eps figures, submitted to J. Optics B for the proceedings of the "Atom Optics and Interferometry" Lunteren 2002 worksho
    corecore