278 research outputs found

    Quasiparticle-injection effect in YBa2Cu3Ox-based planar structures

    Get PDF
    The supercurrent IS of a YBCO bridge can be modulated by the quasiparticle-injection current IG from YBCO/Au or YBCO/PBCO/Au junctions. The behavior of these structures is determined by two effects: 1) summation of the currents IS and IG in the YBCO bridge; 2) nonequilibrium suppression of the supercurrent IS by the quasiparticle-injection. The current gain coefficient ¿IS/¿IG increases linearly with decreasing temperature, reaching a value of 1.5 for YBCO/Au structures at 65 K. The nature of the nonequilibrium state and the effectiveness of the PBCO barrier layer for the formation of the quasiparticles are analyze

    Multilayers for high-Tc superconducting electric field effect devices

    Get PDF
    Epitaxial multilayers, consisting of a PrBa2Cu3O7-x buffer layer, ultrathin YBa2Cu3O7-x and SrTiO3, have been grown for application in electric field effect devices. Different analytical techniques indicate a sharp interface between the layers and good dielectric properties of the SrTiO3-layer. First measurements show clear modification of the superconductor's current-voltage characteristics upon applying electric fields of 0.1-1 MV/cm

    Quasiparticle injection effects in YBa2Cu3Ox-based planar structures at high operating temperatures

    Get PDF
    The modulation of the supercurrent Is of a YBCO bridge by the quasiparticle-injection current IG from the YBCO/Au or YBCO/PBCO/Au junctions at temperatures of 60¿85 K is determined by two effects: (1) summation of the currents IS and IG in the YBCO bridge, and (2) nonequilibrium suppression of IS by the quasiparticle injection. At a thickness of the PBCO barrier of 40 nm the modulation of IS can be described by the current-summation effect only. For YBCO/Au structures the current gain ¿IS/¿IG increases linearly with decreasing temperature, reaching the value of 2 at 60 K. Numerical simulations of the current- voltage characteristics show an increase of the effective temperature T* of the YBCO bridge under injection only at small thicknesses of the PBCO barrier. Visualization of the voltage drop over the junction area by laser scanning microscopy shows a qualitative agreement with the electrical measurements with respect to the current summation and nonequilibrium effects

    Photoresponse of epitaxial YBa2Cu3O7-x ultrathin films

    Get PDF
    The voltage photoresponse of YBa2CH307_ x/SrTiO3 10 nm-tlfick films\ud on laser irradiation is studied using the low temperature scanning laser\ud microscopy (LTSLM) teclmique. The irradiation wavelength is 633 run.\ud The spatial response dependencies via temperature (4-100 K), beam\ud intensity modulation frequency (0-150 kHz) and bias current are\ud examined. The bolometric and non-bolometric components are\ud separated. The amplitude of the non-bolometric component at 4.2 K is\ud about 10 times higher than that of bolometric one measured near the\ud midpoint of the superconducting transition. The non-bolometric\ud component is presumably associated with weak links in the film due to\ud interdiffusion of SrTiO3 into YBCO layer. The spatial irregularity in\ud superconducting parameters is not resolved by the LTSLM method\ud since the spacing between weak links is appeared to be less than 1 um

    A HREM study of the atomic structure and the growth mechanism of the YBa2Cu3O7/YSZ interface

    Get PDF
    The interface between yttria-stabilized zirconia (YSZ) substrate and YBa2Cu3O7 (YBCO) film was studied by high-resolution electron microscopy. In all specimens we have observed an intermediate layer of BaZrO3 located between the substrate YSZ and YBCO. The BaZrO3 layer is composed of almost equally aligned domains being 4¿8 nm in the lateral directions. Reaction products such as Y and Cu oxides were never observed in or close to the BaZrO3 reaction layer but they do occur in the YBCO film. The stacking sequence of BaZrO3/YBCO is predominantly (BaZrO3)-ZrO2-BaO/CuO-BaO-(YBCO) with CuO layer as the beginning YBCO layer. Sometimes a stacking sequence (BaZrO3)-ZrO2-BaO/BaO-CuO2-(YBCO) with a BaO layer as the beginning YBCO layer was observed. This stacking is related to a dislocation with Burgers vector a'/2 [111], where a' = 0.42 nm is the lattice constant of the cubic BaZrO3. Three main epitaxial relations (0°, 45°, 9°) between YSZ and YBCO were observed. These can be explained by near-coincidence site lattices ¿ = 25, ¿ = 49 and ¿ = 13 (for a YSZ substrate). Usually the (001) plane of the YBCO film is parallel to the (001) plane of the BaZrO3 layer and parallel to the substrate surface. In case YBCO is grown on an inclined YSZ substrate, the (001) plane of the YBCO film is parallel to the substrate surface and thus not parallel to the (001) plane of the YSZ substrate

    Electric-field effect devices made of YBa2Cu3O7-x/SrTiO3 epitaxial multilayers

    Get PDF
    Three terminal superconducting electric-field effect devices, consisting of a bufferlayer of PrBa2Cu3O7-x, an ultrathin layer of YBa2Cu3O7-x and a SrTiO3 gate isolation layer were fabricated and successfully operated. Transmission electron microscopy and laser scanning microscopy showed that all layers are highly epitaxial and uniform over the device area. This is essentially important in the analysis of the mechanism of the electric field effect and for the reproducible fabrication of devices. With a 5 nm thick YBa2Cu3O7-x layer and an applied electric field of 0.85 MV/cm the critical current was decreased by 5% at low temperatures and up to 36% close to Tc. Also enhancement was obtained

    Role of Acetylsalicylic Acid in Cytokine Stimulation of Macrophages in Antibody-Dependent Cellular Cytotoxicity (ADCC)

    Get PDF
    In addition to the spectrum of biological action already known to be exhibited by acetylsalicylic acid (ASA) as an analgesic, anti-inflammatory and platelet aggregation inhibitor, there is growing evidence of a stimulatory effect on the immune system. ASA has been found to increase the production ofcytokines and to increase the activity of various leukocytes. The action of ASA on the activity of mouse peritoneal macrophages was therefore investigated in the present study. Therapeutically effective concentrations of ASA, which are known to decrease levels of prostaglandins, had neither a stimulating nor an inhibiting influence on antibody-dependent cellular cytotoxicity (ADCC) or on the binding capacity of macrophages with regard to SW 948 tumour cells. Likewise ASA had little or no adverse effect on the capacity of the macrophages for stimulation by interferon-gamma (IFN-gamma) and interleukin-4 (IL-4). Taken together, the immunostimulant effect of ASA shown in the literature as an increased production of interleukin-2 (IL-2) and IFN, could not be confirmed on the basis of the macrophage cytotoxiclty

    Characterisation of multilayer ramp-type ReBa2Cu3O7-delta structures by scanning probe microscopy and high-resolution electron microscopy

    Get PDF
    We studied the morphology of ramps in REBa2Cu3O7 (REBCO) epitaxial films on SrTiO3 substrates, fabricated by RF magnetron sputter deposition and pulsed laser deposition (PLD), by scanning probe microscopy (SPM) and high resolution electron microscopy (HREM). The ramps were fabricated by Ar ion beam etching using masks of standard photoresist and TiN. AFM-studies on ramps in sputter deposited films show a strong dependence, i.e. formation of facets and ridges, on the angle of incidence of the ion beam with respect to the substrate surface as well as the rotation angle with respect to the crystal axes of the substrate. Ramps in pulsed laser deposited films did not show this dependence. Furthermore, we studied the effect of an anneal step prior to the deposition of barrier layers (i.e. PrBu2CU3O7, SrTiO3, CeO2) on the ramp. First results show a recrystallization of the ramp surface, resulting in terraces and a non-homogeneous growth of the barrier material on top of it. The thickness variations, for thin layers of barrier material, can even become much larger than expected from the amount of deposited material and are dependent on the deposition and anneal conditions. HREM studies show a well defined interface between barrier layer and electrodes. The angle of the ramp depends on the etch rate of the mask and REBCO, and on the angle of incidence of the ion beam. TiN has a much lower etch rate compared to photoresist, resulting in an angle of the ramp comparable to the angle of incidence, resulting in a low etching rate on the ramp. These results will lead to improved electrical characteristics of ramp-type junctions

    Electric field effect on epitaxial YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−x</sub> thin films

    Get PDF
    By applying a strong electric field perpendicular to the surface of an ultrathin, highly uniform epitaxial YBa2Cu3O7¿x film, the critical current was depressed and enhanced over 20% at temperatures close to Tc, and 5% at lower temperatures. Careful analysis of the electric field dependent I-V characteristics and Arrhenius plots indicate that the electric field effect can be interpreted as a change in the pinning potential and/or the vortex-antivortex interaction potential in the Kosterlitz-Thouless regime, as a result of a change in the carrier density in the superconductor

    HTS pulse-stretcher and second order modulator: design and first results

    Get PDF
    One of the remaining challenges in the application of superconducting electronics is the interfacing between superconducting and semiconducting environments. The voltage and speed mismatch between RSFQ pulses and semiconducting read-out electronics makes it necessary to amplify as well as stretch the RSFQ pulses. Moreover, circuits based on HTS (High Temperature Superconductor) technology are very attractive since they can operate under considerably relaxed cooling effort, which is one of the main problems with LTS (Low Temperature Superconductor) circuits. Within the European project SuperADC, a HTS second order sigma delta modulator and a pulse stretcher, used as an interface between the modulator and the first semi-conducting amplifier stage, have been designed at Twente University and will be presented here
    corecore