166 research outputs found

    Using oblique decision trees for the morphological classification of galaxies

    Get PDF
    We discuss the application of a class of machine learning algorithms known as decision trees to the process of galactic classification. In particular, we explore the application of oblique decision trees induced with different impurity measures to the problem of classifying galactic morphology data provided by Storrie-Lombardi et al.(1992). Our results are compared to those obtained by a neural network classifier created by Storrie-Lombardi et al, and we show that the two methodologies are comparable. We conclude with a demonstration that the original data can be easily classified into less well-defined categories

    The Morphologically Divided Redshift Distribution of Faint Galaxies

    Get PDF
    We have constructed a morphologically divided redshift distribution of faint field galaxies using a statistically unbiased sample of 196 galaxies brighter than I = 21.5 for which detailed morphological information (from the Hubble Space Telescope) as well as ground-based spectroscopic redshifts are available. Galaxies are classified into 3 rough morphological types according to their visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift distributions are constructed for each type. The most striking feature is the abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This confirms that the faint end slope of the luminosity function (LF) is steep (alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly abundant at moderate redshifts, and this can be explained by strong luminosity evolution. However, the normalization factor (or the number density) of the LF of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of moderate to high redshift Irr/Pec's increases considerably. This cannot be explained by strong luminosity evolution of the dwarf galaxy populations alone: these Irr/Pec's are probably the progenitors of present day ellipticals and spiral galaxies which are undergoing rapid star formation or merging with their neighbors. On the other hand, the redshift distributions of E/S0s and spirals are fairly consistent those expected from passive luminosity evolution, and are only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ

    Luminosity Functions of Elliptical Galaxies at z < 1.2

    Get PDF
    The luminosity functions of E/S0 galaxies are constructed in 3 different redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST surveys. These independent luminosity functions show the brightening in the luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of significant number evolution. This is the first direct measurement of the luminosity evolution of E/S0 galaxies, and our results support the hypothesis of a high redshift of formation (z > 1) for elliptical galaxies, together with weak evolution of the major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2 table

    The Top Ten List of Gravitational Lens Candidates from the HST Medium Deep Survey

    Get PDF
    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the HST Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e. they are faint systems with sub-arcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates which appear to have multiple images of the source. Three are cases where the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported in Ratnatunga et al 1995 (ApJL, 453, L5) We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area which was searched for these candidate lens objects.Comment: 26 pages including 12 figures and 10 tables. AJ Vol. 117, No.

    Compact Nuclei in Galaxies at Moderate Redshift:II. Their Nature and Implications for the AGN Luminosity Function

    Full text link
    This study explores the space density and properties of active galaxies to z=0.8. We have investigated the frequency and nature of unresolved nuclei in galaxies at moderate redshift as indicators of nuclear activity such as Active Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged galaxies with multi-component models using maximum likelihood estimate techniques to determine the best model fit. We select those galaxies requiring an unresolved point-source component in the galaxy nucleus, in addition to a disk and/or bulge component, to adequately model the galaxy light. We have searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies containing compact nuclei. In our survey of 1033 galaxies, the fraction containing an unresolved nuclear component greater than 5% of the total galaxy light is 9+/-1% corrected for incompleteness. In this second of two papers in this series, we discuss the nature of the compact nuclei and their hosts. We present the upper limit luminosity function (LF) for low-luminosity AGN (LLAGN) in two redshift bins to z=0.8. Mild number density evolution is detected for nuclei at -18 -16 and this flatness, combined with the increase in number density, is inconsistent with pure luminosity evolution. Based on the amount of density evolution observed for these objects, we find that almost all present-day spiral galaxies could have hosted a LLAGN at some point in their lives. We also comment on the likely contribution of these compact nuclei to the soft X-ray background.Comment: 50 pages, 14 figures, to appear in ApJ, April 199
    • …
    corecore