2,949 research outputs found

    Gapless Singlet modes in the Kagome strips: A study through DMRG and strong coupling analysis

    Full text link
    Recently Azaria et al have studied strips of the Kagome-lattice in the weak-coupling limit, where they consist of two spin-half chains on the outside weakly coupled to an array of half-integer spins in the middle. Using a number of mappings they have arrived at the interesting result that in this system all spin excitations are gapped but there are gapless spinless modes. Here we study these Kagome strips in the limit where the interchain couplings are comparable to the coupling to the middle spins by density matrix renormalization group and by a strong coupling analysis. In the limit when the coupling to the middle-spin dominates, the 5-spins of the unit-cell reduce to a single S=3/2 spin, and the overall system has well known gapless spin excitations. We study the phase transition from this phase to the weak-coupling phase. We also carry out a strong coupling analysis away from the S=3/2 limit, where the five-spin blocks have four degenerate ground states with S=1/2, which can be thought of as two spin and two pseudospin degrees of freedom. A numerical study of this strong coupling model also suggests a finite spin-gap.Comment: 4 pages, 4 PS figure

    On the balance energy and nuclear dynamics in peripheral heavy-ion collisions

    Full text link
    We present here the system size dependence of balance energy for semi-central and peripheral collisions using quantum molecular dynamics model. For this study, the reactions of Ne20+Ne20Ne^{20}+Ne^{20}, Ca40+Ca40Ca^{40}+Ca^{40}, Ni58+Ni58Ni^{58}+Ni^{58}, Nb93+Nb93Nb^{93}+Nb^{93}, Xe131+Xe131Xe^{131}+Xe^{131} and Au197+Au197Au^{197}+Au^{197} are simulated at different incident energies and impact parameters. A hard equation of state along with nucleon-nucleon cross-sections between 40 - 55 mb explains the data nicely. Interestingly, balance energy follows a power law Aτ\propto{A^{\tau}} for the mass dependence at all colliding geometries. The power factor τ\tau is close to -1/3 in central collisions whereas it is -2/3 for peripheral collisions suggesting stronger system size dependence at peripheral geometries. This also suggests that in the absence of momentum dependent interactions, Coulomb's interaction plays an exceedingly significant role. These results are further analyzed for nuclear dynamics at the balance point.Comment: 13 pages, 9 figures Accepted in IJMPE (in press

    Interplay of force constants in the lattice dynamics of disordered alloys : An ab-initio study

    Full text link
    A reliable prediction of interatomic force constants in disordered alloys is an outstanding problem. This is due to the need for a proper treatment of multisite (atleast pair) correlation within a random environment. The situation becomes even more challenging for systems with large difference in atomic size and mass. We propose a systematic density functional theory (DFT) based study to predict the ab-initio force constants in random alloys. The method is based on a marriage between special quasirandom structures (SQS) and the augmented space recursion (ASR) to calculate phonon spectra, density of states (DOS) etc. bcc TaW and fcc NiPt alloys are considered as the two distinct test cases. Ta-Ta (W-W) bond distance in the alloy is predicted to be smaller (larger) than those in pure Ta (W), which, in turn, yields stiffer (softer) force constants for Ta (W). Pt-Pt force constants in the alloy, however, are predicted to be softer compared to Ni-Ni, due to a large bond distance of the former. Our calculated force constants, phonon spectra and DOS are compared with experiments and other theoretical results, wherever available. Correct trend of present results for the two alloys pave a path for further future studies in more complex alloy systems

    Thermal conductivity and diffusion-mediated localization in Fe_{1-x}Cr_{x} Alloys

    Full text link
    We apply a new Kubo-Greenwood type formula combined with a generalized Feynman diagram- matic technique to report a first principles calculation of the thermal transport properties of disordered Fe_{1-x}Cr_{x} alloys. The diagrammatic approach simplifies the inclusion of disorder-induced scattering effects on the two particle correlation functions and hence renormalizes the heat current operator to calculate configuration averaged lattice thermal conductivity and diffusivity. The thermal conductivity K(T) in the present case shows an approximate quadratic T-dependence in the low temperature regime (T < 20 K), which subsequently rises smoothly to a T-independent saturated value at high T . A numerical estimate of mobility edge from the thermal diffusivity data yields the fraction of localized states. It is concluded that the complex disorder scattering processes, in force-constant dominated disorder alloys such as Fe-Cr, tend to localize the vibrational modes quite significantly.Comment: 5 pages, 5 figure
    corecore