6,136 research outputs found

    Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    Get PDF
    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952

    Effect of metal precursor on Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> synthesized by flame spray pyrolysis for direct DME production

    Get PDF
    Cu/ZnO/Al2O3 catalysts were synthesized by flame spray pyrolysis (FSP). The effect of different metal precursor types, i.e. metal nitrates and organometallics, on the catalytic properties was investigated. Organometallic precursors are commonly used for flame spray pyrolysis because small nanoparticles can be produced. In this study, we have obtained nanosized copper and zinc oxide clusters also from the nitrate precursors. Characterization was applied to reveal the difference between the clusters obtained from the different precursor types. Both precursors allowed the formation of well-ordered Cu/ZnO/Al2O3 particles with similar size according to TEM investigations. However, the catalyst from metal nitrate precursors possessed a lower reduction temperature, a higher active copper surface area, and a lower overall BET surface area than the one from the organometallic precursor. The catalytic performance of the obtained catalysts was investigated in the direct DME synthesis from synthesis gas. Methanol dehydration catalyst, H-ZSM-5, was therefore admixed to the FSP powders in a pre-defined amount; the FSP powders served as methanol synthesis catalyst in the mixture. The catalyst from metal nitrate precursors showed higher conversion of syngas than the catalyst from the organometallic precursors at same reaction conditions. This effect can be explained mainly by the higher copper surface area. Catalysts with different Cu/Zn ratio were also tested and the best catalyst was further studied by variation of the reaction conditions. In conclusion, we have demonstrated an efficient utilization of less expensive precursor materials for flame spray pyrolysis for production of Cu/ZnO/Al2O3 catalysts

    A Diagnostic Study of the Global Distribution of Contrails, Part II: Future Air Traffic Scenarios

    Get PDF
    The global distribution of the contrail coverage is computed for several scenarios of aviation in the years 2015 and 2050 and compared to 1992 using meteorological analysis data representative of present temperature and humidity conditions and assuming 0.5% cover in a reference region 30° W–30° E, 35° N–75° N covering parts of western Europe and the North Atlantic. The mean contrail coverage of the Earth is computed to increase by a factor of about three compared to 1992 and to reach 0.25% in 2015. For three different scenarios of aviation and for constant climatic conditions, the global mean contrail coverage reaches values between 0.26% and 0.75% for 2050. Contrail coverage increases more strongly than total fuel burn mainly because of more traffic in the upper troposphere and because of more efficient engines with cooler exhaust. The overall efficiency of propulsion is expected to grow from about 0.3 in the fleet average of 1992, to 0.4 in 2015, and to 0.5 in 2050. The expansion of air traffic makes Canada, Alaska, the North Pacific route from North America to Japan and most of the Asian continent new regions where contrails are expected to cover more than 0.5% on average

    Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

    Full text link
    Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.Comment: 5 pages, 5 figure

    The 63^{63}Ni(n,γ\gamma) cross section measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63^{63}Ni affects the abundances of other nuclei in its region, especially 63^{63}Cu and 64^{64}Zn. In order to determine the energy dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4π\pi BaF2_2 array DANCE. The (n,γ\gamma) cross section of 63^{63}Ni has been determined relative to the well known 197^{197}Au standard with uncertainties below 15%. Various 63^{63}Ni resonances have been identified based on the Q-value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ.Comment: 11 pages, 13 page

    Photoemission of Bi2_2Se3_3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Get PDF
    Topological insulators are characterized by Dirac cone surface states with electron spins aligned in the surface plane and perpendicular to their momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50-70 eV) with linear or circular polarization probe indeed the initial state spin texture of Bi2_2Se3_3 while circularly polarized 6 eV low energy photons flip the electron spins out of plane and reverse their spin polarization. Our photoemission calculations, considering the interplay between the varying probing depth, dipole selection rules and spin-dependent scattering effects involving initial and final states explain these findings, and reveal proper conditions for light-induced spin manipulation. This paves the way for future applications of topological insulators in opto-spintronic devices.Comment: Submitted for publication (2013

    High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers

    Get PDF
    The kinetics of isothermal oxidation (1100°C) of commercial nickel-based alloys with different content of sulfur (0.22–3.2 wt ppm) is studied. The adhesion strength in a metal/oxide system is estimated as a function of sulfur content and duration of high-temperature exposure. The scratch-test technique is proposed to quantitatively estimate the work of adhesion of resulting oxide films. It is found that the film microstructure is composed of an inner α-Al2O3 layer and an outer NiAl2O4 spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffraction. spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffractio

    Thermal neutron capture cross section of the radioactive isotope Fe 60

    Get PDF
    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as Fe60 with a half-life of 2.60×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of Fe60 has to be understood reliably. Methods: An Fe60 sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226(-0.049+0.044)b. An upper limit of σRI<0.50b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between kT=10 and 100 keV illustrates that the s-wave part of the direct capture component can be neglected
    • …
    corecore