613 research outputs found
Constraining properties of the black hole population using LISA
LISA should detect gravitational waves from tens to hundreds of systems
containing black holes with mass in the range from 10 thousand to 10 million
solar masses. Black holes in this mass range are not well constrained by
current electromagnetic observations, so LISA could significantly enhance our
understanding of the astrophysics of such systems. In this paper, we describe a
framework for combining LISA observations to make statements about massive
black hole populations. We summarise the constraints that LISA observations of
extreme-mass-ratio inspirals might be able to place on the mass function of
black holes in the LISA range. We also describe how LISA observations can be
used to choose between different models for the hierarchical growth of
structure in the early Universe. We consider four models that differ in their
prescription for the initial mass distribution of black hole seeds, and in the
efficiency of accretion onto the black holes. We show that with as little as 3
months of LISA data we can clearly distinguish between these models, even under
relatively pessimistic assumptions about the performance of the detector and
our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for
proceedings of 8th LISA Symposium; v2 minor changes for consistency with
accepted versio
Clinical Measures of Bulbar Dysfunction in ALS
Bulbar impairment represents a hallmark feature of Amyotrophic Lateral Sclerosis (ALS) that significantly impacts survival and quality of life. Speech and swallowing dysfunction are key contributors to the clinical heterogeneity of ALS and require well-timed and carefully coordinated interventions. The accurate clinical, radiological and electrophysiological assessment of bulbar dysfunction in ALS is one of the most multidisciplinary aspects of ALS care, requiring expert input from speech-language pathologists (SLPs), neurologists, otolaryngologists, augmentative alternative communication (AAC) specialists, dieticians, and electrophysiologists—each with their own evaluation strategies and assessment tools. The need to systematically evaluate the comparative advantages and drawbacks of various bulbar assessment instruments and to develop integrated assessment protocols is increasingly recognized. In this review, we provide a comprehensive appraisal of the most commonly utilized clinical tools for assessing and monitoring bulbar dysfunction in ALS based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) evaluation framework. Despite a plethora of assessment tools, considerable geographical differences exist in bulbar assessment practices and individual instruments exhibit considerable limitations. The gaps identified in the literature offer unique opportunities for the optimization of existing and development of new tools both for clinical and research applications. The multicenter validation and standardization of these instruments will be essential for guideline development and best practice recommendations
Probing seed black holes using future gravitational-wave detectors
Identifying the properties of the first generation of seeds of massive black
holes is key to understanding the merger history and growth of galaxies.
Mergers between ~100 solar mass seed black holes generate gravitational waves
in the 0.1-10Hz band that lies between the sensitivity bands of existing
ground-based detectors and the planned space-based gravitational wave detector,
the Laser Interferometer Space Antenna (LISA). However, there are proposals for
more advanced detectors that will bridge this gap, including the third
generation ground-based Einstein Telescope and the space-based detector DECIGO.
In this paper we demonstrate that such future detectors should be able to
detect gravitational waves produced by the coalescence of the first generation
of light seed black-hole binaries and provide information on the evolution of
structure in that era. These observations will be complementary to those that
LISA will make of subsequent mergers between more massive black holes. We
compute the sensitivity of various future detectors to seed black-hole mergers,
and use this to explore the number and properties of the events that each
detector might see in three years of observation. For this calculation, we make
use of galaxy merger trees and two different seed black hole mass distributions
in order to construct the astrophysical population of events. We also consider
the accuracy with which networks of future ground-based detectors will be able
to measure the parameters of seed black hole mergers, in particular the
luminosity distance to the source. We show that distance precisions of ~30% are
achievable, which should be sufficient for us to say with confidence that the
sources are at high redshift.Comment: 14 pages, 6 figures, 2 tables, accepted for proceedings of 13th GWDAW
meetin
Animal board invited review: advances in proteomics for animal and food sciences
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002 - Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.European Science Foundation (Brussels, Belgium)info:eu-repo/semantics/publishedVersio
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair
The ability of Protein disulphide isomerase (PDI) to promote the grafting of two cysteine-containing peptides onto hair was investigated in order to develop an alternative treatment for over-bleached hair. The studied peptides were designed based on human keratin and human lung surfactant proteins and were linked to a fluorescent dye to facilitate visualisation of the grafting process and to assess hair penetration. The ability of the peptides to restore mechanical and thermal properties lost by repeated bleaching treatments was also studied. After eight bleaching treatments, hair samples displayed 42% less mechanical resistance, coupled with a decrease in α-helix denaturation enthalpies and temperatures. Hair surface damage following bleaching was visualized by scanning electron microscopy. Addition of PDI to the treatment formulations promoted peptide attachment to the hair via disulphide bonds, facilitating their penetration into the hair cortex, as observed by fluorescence microscopy. The proposed peptide treatment resulted in an increase in α-helix denaturation enthalpy in over-bleached hair, as well as an increase in both Young's modulus and tensile strength. Thus, mechanical and thermal properties were improved after the peptide treatment in the presence of PDI; suggesting that the formulations presented in this work are promising candidates for hair-care applications
Epidermal growth factor mediates spermatogonial proliferation in newt testis
The complex processes of spermatogenesis are regulated by various factors. The aim of the current study is to determine the effect of epidermal growth factor (EGF) on spermatogonial proliferation and clarify the mechanism causing the proliferation in newt testis. In the organ culture, EGF stimulated spermatogonial proliferation, but not their differentiation into spermatocytes. cDNA cloning identified 3 members of the EGF receptors, ErbB1, ErbB2, and ErbB4, in the testis. RT-PCR showed that all the receptors cloned were expressed in both Sertoli and germ cells at the spermatogonial stage. In the organ cultures with inhibitors for the EGF receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K), the EGF-induced spermatogonial proliferation was suppressed. Furthermore, when the organ culture was exposed to EGF, the expressions of stem cell factor (SCF), immunoglobulin-like domain containing neuregulin1 (Ig-NRG1), and ErbB4 mRNA were increased. These results suggested that, since the spermatogonia are sequestered within cysts by the blood-testis barrier consisted of Sertoli cells, EGF possibly mediates spermatogonial proliferation in an endocrine manner through the receptors including ErbB1, ErbB2, and ErbB4 expressed on Sertoli cells via activation of MAPK cascade or/and PI3K cascade by elevating the expressions of SCF, Ig-NRG1, and ErbB4
- …