7,019 research outputs found
Concentric left ventricular remodeling and aortic stiffness: A comparison of obesity and hypertension
Licensed under the Creative Commons Attribution Non-Commercial No Derivatives Licens
Generalized Qualification and Qualification Levels for Spectral Regularization Methods
The concept of qualification for spectral regularization methods for inverse
ill-posed problems is strongly associated to the optimal order of convergence
of the regularization error. In this article, the definition of qualification
is extended and three different levels are introduced: weak, strong and
optimal. It is shown that the weak qualification extends the definition
introduced by Mathe and Pereverzev in 2003, mainly in the sense that the
functions associated to orders of convergence and source sets need not be the
same. It is shown that certain methods possessing infinite classical
qualification, e.g. truncated singular value decomposition (TSVD), Landweber's
method and Showalter's method, also have generalized qualification leading to
an optimal order of convergence of the regularization error. Sufficient
conditions for a SRM to have weak qualification are provided and necessary and
sufficient conditions for a given order of convergence to be strong or optimal
qualification are found. Examples of all three qualification levels are
provided and the relationships between them as well as with the classical
concept of qualification and the qualification introduced by Mathe and
Perevezev are shown. In particular, spectral regularization methods having
extended qualification in each one of the three levels and having zero or
infinite classical qualification are presented. Finally several implications of
this theory in the context of orders of convergence, converse results and
maximal source sets for inverse ill-posed problems, are shown.Comment: 20 pages, 1 figur
Large-scale variations of the interplanetary magnetic field: Voyager 1 and 2 observations between 1-5 AU
Observations by the Voyager 1 and 2 spacecraft of the interplanetary magnetic field between 1 and 5 AU were used to investigate the large scale structure of the IMF in a period of increasing solar activity. The Voyager spacecraft found notable deviations from the Parker axial model. These deviations are attributed both to temporal variations associated with increasing solar activity, and to the effects of fluctuations of the field in the radial direction. The amplitude of the latter fluctuations were found to be large relative to the magnitude of the radial field component itself beyond approximately 3 AU. Both Voyager 1 and Voyager 2 observed decreases with increasing heliocentric distance in the amplitude of transverse fluctuations in the averaged field strength (B) which are consistent with the presence of predominantly undamped Alfven waves in the solar wind, although and necessarily implying the presence of them. Fluctuations in the strength of B (relative to mean field strength) were found to be small in amplitude, with a RMS which is approximately one third of that for the transverse fluctuations and they are essentially independent of distance from the Sun
Spin Transfer Torques in MnSi at Ultra-low Current Densities
Spin manipulation using electric currents is one of the most promising
directions in the field of spintronics. We used neutron scattering to observe
the influence of an electric current on the magnetic structure in a bulk
material. In the skyrmion lattice of MnSi, where the spins form a lattice of
magnetic vortices similar to the vortex lattice in type II superconductors, we
observe the rotation of the diffraction pattern in response to currents which
are over five orders of magnitude smaller than those typically applied in
experimental studies on current-driven magnetization dynamics in
nanostructures. We attribute our observations to an extremely efficient
coupling of inhomogeneous spin currents to topologically stable knots in spin
structures
Magnetic field experiment for Voyagers 1 and 2
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured
Magnetic field studies at Jupiter by Voyager 1: Preliminary results
Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 concerning the large scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere are highlighted. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. Magnetic field perturbations associated with intense electrical currents (approximately 5 x 10 to the 6th power amps) flowing near or in the magnetic flux tube linking Jupiter with the satellite Io and induced by the relative motion between Io and the co-rotating Jovian magnetosphere are analyzed and interpreted. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation
A Hot Helium Plasma in the Galactic Center Region
Recent X-ray observations by the space mission Chandra confirmed the
astonishing evidence for a diffuse, hot, thermal plasma at a temperature of 9.
K (8 keV) found by previous surveys to extend over a few hundred parsecs
in the Galactic Centre region. This plasma coexists with the usual components
of the interstellar medium such as cold molecular clouds and a soft (~0.8 keV)
component produced by supernova remnants, and its origin remains uncertain.
First, simple calculations using a mean sound speed for a hydrogen-dominated
plasma have suggested that it should not be gravitationally bound, and thus
requires a huge energy source to heat it in less than the escape time. Second,
an astrophysical mechanism must be found to generate such a high temperature.
No known source has been identified to fulfill both requirements. Here we
address the energetics problem and show that the hot component could actually
be a gravitationally confined helium plasma. We illustrate the new prospects
this opens by discussing the origin of this gas, and by suggesting possible
heating mechanisms.Comment: 9 pages, accepted for publication in APJ
Long-range crystalline nature of the skyrmion lattice in MnSi
We report small angle neutron scattering of the skyrmion lattice in MnSi
using an experimental set-up that minimizes the effects of demagnetizing fields
and double scattering. Under these conditions the skyrmion lattice displays
resolution-limited Gaussian rocking scans that correspond to a magnetic
correlation length in excess of several hundred {\mu}m. This is consistent with
exceptionally well-defined long-range order. We further establish the existence
of higher-order scattering, discriminating parasitic double-scattering with
Renninger scans. The field and temperature dependence of the higher-order
scattering arises from an interference effect. It is characteristic for the
long-range crystalline nature of the skyrmion lattice as shown by simple mean
field calculations.Comment: 4 page
Bone mineral content after renal transplantation
Forearm bone mineral content (BMC), as evaluated by photonabsorption densitometry, was measured in 28 cadaver kidney donor recipients who entered the study 8 weeks postoperatively and were followed up for 18 months. BMC decreased signifiantly (p<0.05) but marginally in placebo-treated patients (n=14) (initial BMC 1.09±0.25 g/cm; final BMC 1.05±0.24). Fourteen patients were prophylactically given 1,25(OH)2vitamin D3 in a dose which avoided hypercalcemia and hypercalciuria (sim0.25 µg/day); under 1,25(OH)2 vitamin D3 prophylaxis a significant decrease of forearm BMC was observed no longer (initial BMC 0.94±0.21 g/cm; final BMC 0.95±0.21), but the difference between placebo and 1,25(OH)2 vitamin D3 narrowly missed statistical significance (p=0.066).
It is concluded that the decrease of forearm BMC is negligible in transplant recipients with low steroid regimens. The data suggest a trend for prophylaxis with 1,25(OH)2 vitamin D3 to slightly ameliorate forearm (cortical) BMC loss
- …