56 research outputs found
Modulated structure in the martensite phase of Ni1.8Pt0.2MnGa: a neutron diffraction study
7M orthorhombic modulated structure in the martensite phase of Ni1.8Pt0.2MnGa
is reported by powder neutron diffraction study, which indicates that it is
likely to exhibit magnetic field induced strain. The change in the unit cell
volume is less than 0.5% between the austenite and martensite phases, as
expected for a volume conserving martensite transformation. The magnetic
structure analysis shows that the magnetic moment in the martensite phase is
higher compared to Ni2MnGa, which is in good agreement with magnetization
measurement
Appearance of Half-Metallicity in the Quaternary Heusler Alloys
I report systematic first-principle calculations of the quaternary Heusler
alloys like Co[CrMn]Al, CoMn[AlSn] and
[FeCo]MnAl. I show that when the two limiting cases (x=0 or 1)
correspond to a half-metallic compound, so do the intermediate cases. Moreover
the total spin moment in scales linearly with the total number of
valence electrons (and thus with the concentration ) following the
relation , independently of the origin of the extra valence
electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys.
Finally I discuss in all cases the trends in the atomic projected DOSs and in
the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table
Geometric, electronic, and magnetic structure of CoFeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new
materials with high spin polarization. It is based on two semi-empirical
models. Firstly, the Slater-Pauling rule was used for estimation of the
magnetic moment. This model is well supported by electronic structure
calculations. The second model was found particularly for Co based Heusler
compounds when comparing their magnetic properties. It turned out that these
compounds exhibit seemingly a linear dependence of the Curie temperature as
function of the magnetic moment. Stimulated by these models, CoFeSi was
revisited. The compound was investigated in detail concerning its geometrical
and magnetic structure by means of X-ray diffraction, X-ray absorption and
M\"o\ss bauer spectroscopies as well as high and low temperature magnetometry.
The measurements revealed that it is, currently, the material with the highest
magnetic moment () and Curie-temperature (1100K) in the classes of
Heusler compounds as well as half-metallic ferromagnets. The experimental
findings are supported by detailed electronic structure calculations
Design of magnetic materials: CoCrFeAl
Doped Heusler compounds CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure of the ordered, doped Heusler compound CoCrFeAl
( was calculated using different types of band structure
calculations. The ordered compounds turned out to be ferromagnetic with small
Al magnetic moment being aligned anti-parallel to the 3d transition metal
moments. All compounds show a gap around the Fermi-energy in the minority
bands. The pure compounds exhibit an indirect minority gap, whereas the
ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism
(MCD) in X-ray absorption spectra was measured at the edges of Co,
Fe, and Cr of the pure compounds and the alloy in order to determine
element specific magnetic moments. Calculations and measurements show an
increase of the magnetic moments with increasing iron content. The
experimentally observed reduction of the magnetic moment of Cr can be explained
by Co-Cr site-disorder. The presence of the gap in the minority bands of
CoCrAl can be attributed to the occurrence of pure Co and mixed CrAl
(001)-planes in the structure. It is retained in structures with
different order of the CrAl planes but vanishes in the -structure with
alternating CoCr and CoAl planes.Comment: corrected author lis
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
Magnetic-Form Factor Measurements by Polarised Neutron Scattering: Application to Heavy Fermion Superconductors
The experimental technique of spin polarised neutron scattering as used in magnetic form factor measurements is presented. An introduction to the interpretation and the calculation of magnetic form factors and magnetization densities is given. The experimental technique of neutron scattering theory as applied to elastic spin polarised scattering experiments is briefly introduced. The calculation of the magnetic form factor and the magnetization densities are considered for simple model systems such as a collection of localised magnetic moments or an itinerant electron system. The discussion is illustrated by an experimental investigation of the magnetic form factor in the heavy fermion superconductors UBe and UPt. Magnetization density maps and magnetic form factors are presented, and their implications for other physical quantities are briefly discussed
Stability of ferromagnetism against doping in half-metallic alloys
We use a rigid band model to simulate doping in half-metallic NiMnSb and CoMnSb semi-Heusler alloys. Using first-principles calculations we calculate the intrasublattice exchange constants and the Curie temperature for these alloys as a function of the shift of the Fermi level and compare them also with the case of half-metallic CrAs and CrSe zinc-blende alloys. We show for all four compounds that the interactions between Cr-Cr(Mn-Mn) nearest neighbors are sufficient to explain the behavior of the Curie temperature. The interplay between the ferromagnetic RKKY-like and the antiferromagnetic superexchange interactions depends strongly on the details of the density of states around the minority-spin gap and thus it is found to be alloy-dependent. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592168
- …