10,224 research outputs found
Modeling incompressible thermal flows using a central-moment-based lattice Boltzmann method
In this paper, a central-moment-based lattice Boltzmann (CLB) method for
incompressible thermal flows is proposed. In the method, the incompressible
Navier-Stokes equations and the convection-diffusion equation for the
temperature field are sloved separately by two different CLB equations. Through
the Chapman-Enskog analysis, the macroscopic governing equations for
incompressible thermal flows can be reproduced. For the flow field, the tedious
implementation for CLB method is simplified by using the shift matrix with a
simplified central-moment set, and the consistent forcing scheme is adopted to
incorporate forcing effects. Compared with several D2Q5
multiple-relaxation-time (MRT) lattice Boltzmann methods for the temperature
equation, the proposed method is shown to be better Galilean invariant through
measuring the thermal diffusivities on a moving reference frame. Thus a higher
Mach number can be used for convection flows, which decreases the computational
load significantly. Numerical simulations for several typical problems confirm
the accuracy, efficiency, and stability of the present method. The grid
convergence tests indicate that the proposed CLB method for incompressible
thermal flows is of second-order accuracy in space
Theory of resonant spin Hall effect
A biref review is presented on resonant spin Hall effect, where a tiny
external electric field induces a saturated spin Hall current in a
2-dimensional electron or hole gas in a perpendicular magnetic field. The
phenomenon is attributted to the energy level crossing associated with the
spin-orbit coupling and the Zeeman splitting. We summarize recent theoretical
development of the effect in various systems and discuss possible experiments
to observe the effect.Comment: 5 pages with 1 figure
Comment on 'Note on the dog-and-rabbit chase problem in introductory kinematics'
We comment on the recent paper by Yuan Qing-Xin and Du Yin-Xiao (Eur. J.
Phys. 29 (2008) N43-N45).Comment: 2 pages, no figure
Frequency pulling and mixing of relaxation oscillations in superconducting nanowires
Many superconducting technologies such as rapid single flux quantum computing
(RSFQ) and superconducting quantum interference devices (SQUIDs) rely on the
modulation of nonlinear dynamics in Josephson junctions for functionality. More
recently, however, superconducting devices have been developed based on the
switching and thermal heating of nanowires for use in fields such as single
photon detection and digital logic. In this paper, we use resistive shunting to
control the nonlinear heating of a superconducting nanowire and compare the
resulting dynamics to those observed in Josephson junctions. We show that
interaction of the hotspot growth with the external shunt produces high
frequency relaxation oscillations with similar behavior as observed in
Josephson junctions due to their rapid time constants and ability to be
modulated by a weak periodic signal. In particular, we use a microwave drive to
pull and mix the oscillation frequency, resulting in phase locked features that
resemble the AC Josephson effect. New nanowire devices based on these
conclusions have promising applications in fields such as parametric
amplification and frequency multiplexing
- …