87,786 research outputs found

    Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model

    Full text link
    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/sqrt(a). Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.Comment: 9 figures, 2 tables, accepted by Physical Review E (in press

    Parameter Sensitivity Analysis of Social Spider Algorithm

    Full text link
    Social Spider Algorithm (SSA) is a recently proposed general-purpose real-parameter metaheuristic designed to solve global numerical optimization problems. This work systematically benchmarks SSA on a suite of 11 functions with different control parameters. We conduct parameter sensitivity analysis of SSA using advanced non-parametric statistical tests to generate statistically significant conclusion on the best performing parameter settings. The conclusion can be adopted in future work to reduce the effort in parameter tuning. In addition, we perform a success rate test to reveal the impact of the control parameters on the convergence speed of the algorithm

    Base Station Switching Problem for Green Cellular Networks with Social Spider Algorithm

    Full text link
    With the recent explosion in mobile data, the energy consumption and carbon footprint of the mobile communications industry is rapidly increasing. It is critical to develop more energy-efficient systems in order to reduce the potential harmful effects to the environment. One potential strategy is to switch off some of the under-utilized base stations during off-peak hours. In this paper, we propose a binary Social Spider Algorithm to give guidelines for selecting base stations to switch off. In our implementation, we use a penalty function to formulate the problem and manage to bypass the large number of constraints in the original optimization problem. We adopt several randomly generated cellular networks for simulation and the results indicate that our algorithm can generate superior performance
    • …
    corecore