7 research outputs found

    Correlation Exponent and Anomalously Localized States at the Critical Point of the Anderson Transition

    Full text link
    We study the box-measure correlation function of quantum states at the Anderson transition point with taking care of anomalously localized states (ALS). By eliminating ALS from the ensemble of critical wavefunctions, we confirm, for the first time, the scaling relation z(q)=d+2tau(q)-tau(2q) for a wide range of q, where q is the order of box-measure moments and z(q) and tau(q) are the correlation and the mass exponents, respectively. The influence of ALS to the calculation of z(q) is also discussed.Comment: 6 pages, 3 figure

    Anomalously localized states and multifractal correlations of critical wavefunctions in two-dimensional electron systems with spin-orbital interactions

    Full text link
    Anomalously localized states (ALS) at the critical point of the Anderson transition are studied for the SU(2) model belonging to the two-dimensional symplectic class. Giving a quantitative definition of ALS to clarify statistical properties of them, the system-size dependence of a probability to find ALS at criticality is presented. It is found that the probability increases with the system size and ALS exist with a finite probability even in an infinite critical system, though the typical critical states are kept to be multifractal. This fact implies that ALS should be eliminated from an ensemble of critical states when studying critical properties from distributions of critical quantities. As a demonstration of the effect of ALS to critical properties, we show that the distribution function of the correlation dimension of critical wavefunctions becomes a delta function in the thermodynamic limit only if ALS are eliminated.Comment: 7 pages, 6 figure

    Point-Contact Conductances at the Quantum Hall Transition

    Full text link
    On the basis of the Chalker-Coddington network model, a numerical and analytical study is made of the statistics of point-contact conductances for systems in the integer quantum Hall regime. In the Hall plateau region the point-contact conductances reflect strong localization of the electrons, while near the plateau transition they exhibit strong mesoscopic fluctuations. By mapping the network model on a supersymmetric vertex model with GL(2|2) symmetry, and postulating a two-point correlator in keeping with the rules of conformal field theory, we derive an explicit expression for the distribution of conductances at criticality. There is only one free parameter, the power law exponent of the typical conductance. Its value is computed numerically to be X_t = 0.640 +/- 0.009. The predicted conductance distribution agrees well with the numerical data. For large distances between the two contacts, the distribution can be described by a multifractal spectrum solely determined by X_t. Our results demonstrate that multifractality can show up in appropriate transport experiments.Comment: 18 pages, 15 figures included, revised versio

    Participation ratio and fidelity analyses as tools to study BCS-BEC crossover

    No full text
    Solving Bogoliubov-de Gennes (BdG) equations for a two dimensional Hubbard model with random on-site disorder, we compute the participation ratio and fidelity to establish conviction for a BCS-BEC crossover scenario at intermediate values of disorder proposed earlier [P. Dey, S. Basu, J. Phys.: Condens. Matter 20, 485205 (2008)]. The participation ratio analysis suggests the onset of a phase with shrunk pairs extending over moderate number of lattice sites, which however preserves the superfluid character. The fidelity or the ground state overlap for two different (but closely lying) values of the disorder strength shows an abrupt drop at the immediate neighbourhood of the disorder strength where an onset of a paired (bose-like) phase occurs
    corecore