6,492 research outputs found
Magnetic excitations in the metallic single-layer Ruthenates Ca(2-x)Sr(x)RuO(4) studied by inelastic neutron scattering
By inelastic neutron scattering, we have analyzed the magnetic correlations
in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4),
0.2<=x<=0.62. We find different contributions that correspond to 2D
ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors
(0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the
measured response as function of the Sr-concentration x, of the magnetic field
and of the temperature. A generic model is applicable to metallic
Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly
varying physical properties. The amplitude, characteristic energy and width of
the incommensurate components vary only little as function of x, but the
ferromagnetic component depends sensitively on concentration, temperature and
magnetic field. While ferromagnetic fluctuations are very strong in
Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they
are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of
a magnetic field and form a magnon mode above the metamagnetic transition. The
inelastic neutron scattering results document how the competition between
ferromagnetic and incommensurate antiferromagnetic instabilities governs the
physics of this system
Field-induced paramagnons at the metamagnetic transition in Ca1.8Sr0.2RuO4
The magnetic excitations in Ca1.8Sr0.2RuO4 were studied across the
metamagnetic transition and as a function of temperature using inelastic
neutron scattering. At low temperature and low magnetic field the magnetic
response is dominated by a complex superposition of incommensurate
antiferromagnetic fluctuations. Upon increasing the magnetic field across the
metamagnetic ransition, paramagnon and finally well-defined magnon scattering
is induced, partially suppressing the incommensurate signals. The high-field
phase in Ca1.8Sr0.2RuO4 has, therefore, to be considered as an intrinsically
ferromagnetic state stabilized by the magnetic field
Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe
The physical properties of the antiferroquadrupolar state occurring in TmTe
below TQ=1.8 K have been studied using neutron diffraction in applied magnetic
fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is
observed and, from its magnitude and direction for different orientations of H,
an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5
K reveal that the magnetic structure is canted, in agreement with theoretical
predictions for in-plane antiferromagnetism. Complex domain repopulation
effects occur when the field is increased in the ordered phases, with
discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on
Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001),
September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical
Society of Japan (2002
Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu(BO)
The temperature dependence of the gapped triplet excitations (triplons) in
the 2D Shastry-Sutherland quantum magnet SrCu(BO) is studied by
means of inelastic neutron scattering. The excitation amplitude rapidly
decreases as a function of temperature while the integrated spectral weight can
be explained by an isolated dimer model up to 10~K. Analyzing this anomalous
spectral line-shape in terms of damped harmonic oscillators shows that the
observed damping is due to a two-component process: one component remains sharp
and resolution limited while the second broadens. We explain the underlying
mechanism through a simple yet quantitatively accurate model of correlated
decay of triplons: an excited triplon is long-lived if no thermally populated
triplons are near-by but decays quickly if there are. The phenomenon is a
direct consequence of frustration induced triplon localization in the
Shastry--Sutherland lattice.Comment: 5 pages, 4 figure
Microscopic theory of quadrupolar ordering in TmTe
We have calculated the crystal electric field of TmTe (T>T_Q) and have
obtained that the ground state of a Tm 4f hole is the doublet in
agreement with Mossbauer experiments. We study the quadrupole interactions
arising from quantum transitions of 4f holes of Tm. An effective attraction is
found at the L point of the Brillouin zone, . Assuming that the
quadrupolar condensation involves a single arm of we show that
there are two variants for quadrupole ordering which are described by the space
groups C2/c and C2/m. The Landau free energy is derived in mean-field theory.
The phase transition is of second order. The corresponding quadrupole order
parameters are combinations of and components. The obtained
domain structure is in agreement with observations from neutron diffraction
studies for TmTe. Calculated lattice distortions are found to be different for
the two variants of quadrupole ordering. We suggest to measure lattice
displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR
The Extended Shapes of Galactic Satellites
We are exploring the extended stellar distributions of Galactic satellite
galaxies and globular clusters. For seven objects studied thus far, the
observed profile departs from a King function at large r, revealing a ``break
population'' of stars. In our sample, the relative density of the ``break''
correlates to the inferred M/L of these objects. We discuss opposing hypotheses
for this trend: (1) Higher M/L objects harbor more extended dark matter halos
that support secondary, bound, stellar ``halos''. (2) The extended populations
around dwarf spheroidals (and some clusters) consist of unbound, extratidal
debris from their parent objects, which are undergoing various degrees of tidal
disruption. In this scenario, higher M/L ratios reflect higher degrees of
virial non-equilibrium in the parent objects, thus invalidating a precept
underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of
Galaxies and Their Halo
Structures and orientational transitions in thin films of tilted hexatic smectics
We present detailed systematic studies of structural transformations in thin
liquid crystal films with the smectic-C to hexatic phase transition. For the
first time all possible structures reported in the literature are observed for
one material (5 O.6) at the variation of temperature and thickness. In unusual
modulated structures the equilibrium period of stripes is twice with respect to
the domain size. We interpret these patterns in the frame work of
phenomenological Landau type theory, as equilibrium phenomena produced by a
natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure
High-pressure transport properties of CeRu_2Ge_2
The pressure-induced changes in the temperature-dependent thermopower S(T)
and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the
single-site Anderson model. The Ce-ions are treated as impurities and the
coherent scattering on different Ce-sites is neglected. Changing the
hybridisation \Gamma between the 4f-states and the conduction band accounts for
the pressure effect. The transport coefficients are calculated in the
non-crossing approximation above the phase boundary line. The theoretical S(T)
and \rho(T) curves show many features of the experimental data. The seemingly
complicated temperature dependence of S(T) and \rho(T), and their evolution as
a function of pressure, is related to the crossovers between various fixed
points of the model.Comment: 9 pages, 10 figure
- …