1,038 research outputs found

    Different electrophysiological actions of 24- and 72-hour aggregated amyloid-beta oligomers on hippocampal field population spike in both anesthetized and awake rats.

    Get PDF
    Diffusible oligomeric assemblies of the amyloid beta-protein (Abeta) could be the primary factor in the pathogenic pathway leading to Alzheimer's disease (AD). Converging lines of evidence support the notion that AD begins with subtle alterations in synaptic efficacy, prior to the occurrence of extensive neuronal degeneration. Recently, however, a shared or overlapping pathogenesis for AD and epileptic seizures occurred as aberrant neuronal hyperexcitability, as well as nonconvulsive seizure activity were found in several different APP transgenic mouse lines. This generated a renewed attention to the well-known comorbidity of AD and epilepsy and interest in how Abeta oligomers influence neuronal excitability. In this study therefore, we investigated the effect of various in vitro-aged Abeta(1-42) oligomer solutions on the perforant pathway-evoked field potentials in the ventral hippocampal dentate gyrus in vivo. Firstly, Abeta oligomer solutions (1 microl, 200 microM) which had been aggregated in vitro for 0, 24 or 72h were injected into the hippocampus of urethane-anesthetized rats, in parallel with in vitro physico-chemical characterization of Abeta oligomerization (atomic force microscopy, thioflavin-T fluorescence). We found a marked increase of hippocampal population spike (pSpike) after injection of the 24-h Abeta oligomer solution and a decrease of the pSpike amplitude after injection of the 72-h Abeta oligomer. Since urethane anesthesia affects the properties of hippocampal evoked potentials, we repeated the injection of these two Abeta oligomer solutions in awake, freely moving animals. Evoked responses to perforant pathway stimulation revealed a 70% increase of pSpike amplitude 50 min after the 24-h Abeta oligomer injection and a 55% decrease after the 72-h Abeta oligomer injection. Field potentials, that reflect synaptic potentials, were not affected by the Abeta injection. These results demonstrate that oligomeric Abeta aggregates elicit opposite electrophysiological effects on neuronal excitability which depend on their degree of oligomerization

    Germ Cell Transplantation Using Sexually Competent Fish: An Approach for Rapid Propagation of Endangered and Valuable Germlines

    Get PDF
    The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC) proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT) in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae), were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg) and high water temperature (25°C) treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2–13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species

    Glassy states in lattice models with many coexisting crystalline phases

    Full text link
    We study the emergence of glassy states after a sudden cooling in lattice models with short range interactions and without any a priori quenched disorder. The glassy state emerges whenever the equilibrium model possesses a sufficient number of coexisting crystalline phases at low temperatures, provided the thermodynamic limit be taken before the infinite time limit. This result is obtained through simulations of the time relaxation of the standard Potts model and some exclusion models equipped with a local stochastic dynamics on a square lattice.Comment: 12 pages, 4 figure

    Human CD25+CD4+ T Suppressor Cell Clones Produce Transforming Growth Factor β, but not Interleukin 10, and Are Distinct from Type 1 T Regulatory Cells

    Get PDF
    T regulatory (Tr) cells are essential for the induction of peripheral tolerance. Several types of Tr cells exist, including CD4+ T cells which express CD25 constitutively and suppress immune responses via direct cell-to-cell interactions, and type 1 T regulatory (Tr1) cells, which function via secretion of interleukin (IL)-10 and transforming growth factor (TGF)-β. The relationship between CD25+CD4+ T cells and Tr1 cells remains unclear. Here, we demonstrate at the clonal level that Tr1 and CD25+CD4+ T cells are two distinct subsets of regulatory cells with different cytokine production profiles. Furthermore, CD25−CD4+ T cells can be rendered anergic by IL-10 and differentiated into Tr1 cells in the absence of CD25+CD4+ T cells. Cloned human CD25+CD4+ T cell populations are heterogeneous and only a subset of clones continues to express high levels of CD25 and is suppressive. The intensity of CD25, cytotoxic T lymphocyte antigen (CTLA)-4, and glucocorticoid-induced tumor necrosis factor (TNF) receptor expression correlates with the suppressive capacity of the T cell clones. None of the CD25+CD4+ T cell clones with suppressive function produce IL-10, but all produce TGF-β. Suppression mediated by CD25+CD4+ T cell clones is partially dependent on TGF-β, but not on constitutive high expression of CD25. Together these data indicate that naturally occurring human CD25+CD4+ T cells are distinct from IL-10–producing Tr1 cells
    • …
    corecore