16 research outputs found

    Magnetic properties and magnetostructural phase transitions in Ni2+xMn1-xGa shape memory alloys

    Full text link
    A systematic study of magnetic properties of Ni2+xMn1-xGa (0 \le x \le 0.19) Heusler alloys undergoing structural martensite-austenite transformations while in ferromagnetic state has been performed. From measurements of spontaneous magnetization, Ms(T), jumps \Delta M at structural phase transitions were determined. Virtual Curie temperatures of the martensite were estimated from the comparison of magnetization in martensitic and austenitic phases. Both saturation magnetic moments in ferromagnetic state and effective magnetic moments in paramagnetic state of Mn and Ni atoms were estimated and the influence of delocalization effects on magnetism in these alloys was discussed. The experimental results obtained show that the shift of martensitic transition temperature depends weakly on composition. The values of this shift are in good correspondence with Clapeyron-Clausius formalism taking into account the experimental data on latent heat at martensite-austenite transformations.Comment: 7 pages, 8 figure

    Modified Spin Wave Thoery of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet

    Full text link
    The ground state of the square lattice bilayer quantum antiferromagnet with nearest and next-nearest neighbour intralayer interaction is studied by means of the modified spin wave method. For weak interlayer coupling, the ground state is found to be always magnetically ordered while the quantum disordered phase appear for large enough interlayer coupling. The properties of the disordered phase vary according to the strength of the frustration. In the regime of weak frustration, the disordered ground state is an almost uncorrelated assembly of interlayer dimers, while in the strongly frustrated regime the quantum spin liquid phase which has considerable N\'eel type short range order appears. The behavior of the sublattice magnetization and spin-spin correlation length in each phase is discussed.Comment: 15 pages, revtex, figures upon reques
    corecore