48,320 research outputs found
Genuine Multipartite Entanglement in Quantum Phase Transitions
We demonstrate that the Global Entanglement (GE) measure defined by Meyer and
Wallach, J. Math. Phys. 43, 4273 (2002), is maximal at the critical point for
the Ising chain in a transverse magnetic field. Our analysis is based on the
equivalence of GE to the averaged linear entropy, allowing the understanding of
multipartite entanglement (ME) features through a generalization of GE for
bipartite blocks of qubits. Moreover, in contrast to GE, the proposed ME
measure can distinguish three paradigmatic entangled states: ,
, and . As such the generalized measure can detect
genuine ME and is maximal at the critical point.Comment: 4 pages, 3 figures. Replaced with final published versio
Entanglement versus mixedness for coupled qubits under a phase damping channel
Quantification of entanglement against mixing is given for a system of
coupled qubits under a phase damping channel. A family of pure initial joint
states is defined, ranging from pure separable states to maximally entangled
state. An ordering of entanglement measures is given for well defined initial
state amount of entanglement.Comment: 9 pages, 2 figures. Replaced with final published versio
Dimensional-scaling estimate of the energy of a large system from that of its building blocks: Hubbard model and Fermi liquid
A simple, physically motivated, scaling hypothesis, which becomes exact in
important limits, yields estimates for the ground-state energy of large,
composed, systems in terms of the ground-state energy of its building blocks.
The concept is illustrated for the electron liquid, and the Hubbard model. By
means of this scaling argument the energy of the one-dimensional half-filled
Hubbard model is estimated from that of a 2-site Hubbard dimer, obtaining
quantitative agreement with the exact one-dimensional Bethe-Ansatz solution,
and the energies of the two- and three-dimensional half-filled Hubbard models
are estimated from the one-dimensional energy, recovering exact results for
and and coming close to Quantum Monte Carlo data for
intermediate .Comment: 3 figure
Water activity in lamellar stacks of lipid bilayers: "Hydration forces" revisited
Water activity and its relationship with interactions stabilising lamellar
stacks of mixed lipid bilayers in their fluid state are investigated by means
of osmotic pressure measurements coupled with small-angle x-ray scattering. The
(electrically-neutral) bilayers are composed of a mixture in various
proportions of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic
cosurfactant with an ethoxylated polar head. For highly dehydrated samples the
osmotic pressure profile always exhibits the "classical" exponential decay as
hydration increases but, depending on Simulsol to lecithin ratio, it becomes
either of the "bound" or "unbound" types for more water-swollen systems. A
simple thermodynamic model is used for interpreting the results without
resorting to the celebrated but elusive "hydration forces"Comment: 24 pages, 12 figures. Accepted for publication in The European
Physical Journal
The mechanism for the electrooxidation of procarbazine pharmaceutical preparation in alkaline media and its mathematical description
The mechanism for the electrooxidation of procarbazine in alkaline media has been proposed. The process is realized completely on the electrode surface and is adsorption-controlled. The oscillatory behavior in this case is more probable, than for neutral media and may be caused by influences of electrochemical oxidation and salt dissolution from the electrode surface
- …