23 research outputs found
The Paulsen Problem, Continuous Operator Scaling, and Smoothed Analysis
The Paulsen problem is a basic open problem in operator theory: Given vectors
that are -nearly satisfying the
Parseval's condition and the equal norm condition, is it close to a set of
vectors that exactly satisfy the Parseval's
condition and the equal norm condition? Given , the squared
distance (to the set of exact solutions) is defined as where the infimum is over the set of exact solutions.
Previous results show that the squared distance of any -nearly
solution is at most and there are
-nearly solutions with squared distance at least .
The fundamental open question is whether the squared distance can be
independent of the number of vectors .
We answer this question affirmatively by proving that the squared distance of
any -nearly solution is . Our approach is based
on a continuous version of the operator scaling algorithm and consists of two
parts. First, we define a dynamical system based on operator scaling and use it
to prove that the squared distance of any -nearly solution is . Then, we show that by randomly perturbing the input vectors, the
dynamical system will converge faster and the squared distance of an
-nearly solution is when is large enough
and is small enough. To analyze the convergence of the dynamical
system, we develop some new techniques in lower bounding the operator capacity,
a concept introduced by Gurvits to analyze the operator scaling algorithm.Comment: Added Subsection 1.4; Incorporated comments and fixed typos; Minor
changes in various place
Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets
In this paper we study the boundary limit properties of harmonic functions on
, the solutions to the Poisson equation where is a p.c.f. set
and its Laplacian given by a regular harmonic structure. In
particular, we prove the existence of nontangential limits of the corresponding
Poisson integrals, and the analogous results of the classical Fatou theorems
for bounded and nontangentially bounded harmonic functions.Comment: 22 page
Spectral analysis on infinite Sierpinski fractafolds
A fractafold, a space that is locally modeled on a specified fractal, is the
fractal equivalent of a manifold. For compact fractafolds based on the
Sierpinski gasket, it was shown by the first author how to compute the discrete
spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian.
A similar problem was solved by the second author for the case of infinite
blowups of a Sierpinski gasket, where spectrum is pure point of infinite
multiplicity. Both works used the method of spectral decimations to obtain
explicit description of the eigenvalues and eigenfunctions. In this paper we
combine the ideas from these earlier works to obtain a description of the
spectral resolution of the Laplacian for noncompact fractafolds. Our main
abstract results enable us to obtain a completely explicit description of the
spectral resolution of the fractafold Laplacian. For some specific examples we
turn the spectral resolution into a "Plancherel formula". We also present such
a formula for the graph Laplacian on the 3-regular tree, which appears to be a
new result of independent interest. In the end we discuss periodic fractafolds
and fractal fields
A class of Fourier multipliers for modulation spaces.
We prove the boundedness of a general class of Fourier multipliers, in particular of the Hilbert transform, on modulation spaces. In general, however, the Fourier multipliers in this class fail to be bounded on Lp spaces. The main tools are Gabor frames and methods from time–frequency analysis