6 research outputs found

    A Note on the Regularity of Inviscid Shell Model of Turbulence

    Get PDF
    In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade initiated in \cite{CLT05}. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy unCkn1/3(nlog(n+1))1|{u_n}| \le C k_n^{-1/3} (\sqrt{n} \log(n+1))^{-1}, for some positive absolute constant CC, which is the analogue of the Onsager's conjecture for the Euler's equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the ``two-dimensional'' parameters regime

    Vorticity statistics in the two-dimensional enstrophy cascade

    Get PDF
    We report the first extensive experimental observation of the two-dimensional enstrophy cascade, along with the determination of the high order vorticity statistics. The energy spectra we obtain are remarkably close to the Kraichnan Batchelor expectation. The distributions of the vorticity increments, in the inertial range, deviate only little from gaussianity and the corresponding structure functions exponents are indistinguishable from zero. It is thus shown that there is no sizeable small scale intermittency in the enstrophy cascade, in agreement with recent theoretical analyses.Comment: 5 pages, 7 Figure

    Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence

    Get PDF
    In this work we derive a lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing and for sufficiently small viscosity term ν\nu, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to logλν1\log_\lambda \nu^{-1} for all values of the governing parameter ϵ\epsilon, except for ϵ=1\epsilon=1. The obtained lower bounds are sharp, matching the upper bounds for the dimension of the global attractor obtained in our previous work. Moreover, we show different scenarios of the transition to chaos for different parameters regime and for specific forcing. In the ``three-dimensional'' regime of parameters this scenario changes when the parameter ϵ\epsilon becomes sufficiently close to 0 or to 1. We also show that in the ``two-dimensional'' regime of parameters for a certain non-zero forcing term the long-time dynamics of the model becomes trivial for any value of the viscosity
    corecore