422 research outputs found

    Revision of the Selection Function of the Optical Redshift Survey using the Sloan Digital Sky Survey Early Data Release: Toward an Accurate Estimate of Source Number Density of Ultra-High Energy Cosmic Rays

    Get PDF
    If Ultra-High Energy Cosmic Rays (UHECRs) are originated from nearby galaxies, modeling of the distribution of nearby galaxies is important to an accurate estimate the source number density of UHECRs. We investigate uncertainty of the selection function of the Optical Redshift Survey (ORS), which we used to construct a source model of UHECRs. The investigation is based on a comparison of numbe counts of ORS galaxies with those of the spectroscopic sample of the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR). We carefully count galaxies in the same absolute magnitude bin from the two samples. We find a slight systematic overestimate of the ORS counts outside 5000 km s−1^{-1} by about a factor of 2. We revise the selection function of the ORS assuming that the SDSS counts are correct. Our revision is based on the absorption given in the ORS catalog as well as that computed from Schlegel et al. (1998), which is systematically larger than the former by AB∼0.1A_B \sim 0.1 mag in the region of low absorption. It is found that introduction of Schlegel et al.'s absorption changes one of the parameters of the ORS selection function by more than 10%. The revision should be taken into account in the future analysis of the source number density of UHECRs based on the ORS. Using the revised selection function, we determine the global structure of the Local Supercluster (LSC) with a source model of UHECRs, that is, a number-density model consisting of a uniform spherical halo and an exponential disk. We find that the revision is insignificant in terms of the structure of the LSC. However, the revised selection function will be useful to other studies such as peculiar velocity and correlation function.Comment: 22 pages, 13 figures. accepted for publication in PAS

    Interstellar Gas and X-rays toward the Young Supernova Remnant RCW 86; Pursuit of the Origin of the Thermal and Non-Thermal X-ray

    Full text link
    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between −46-46 and −28-28 km s−1^{-1} toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO JJ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm−3^{-3}. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7−-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.Comment: 19 pages, 15 figures, 4 tables, accepted for publication in Journal of High Energy Astrophysics (JHEAp

    31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State

    Full text link
    The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation) measurements on the filled skutterudite system SmFe4P12 have been carried out. The temperature T dependence of the 31P-NMR spectra indicates the existence of the crystalline electric field effect splitting of the Sm3+$ (J = 5/2) multiplet into a ground state and an excited state of about 70 K. The spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T dependence deviated from the Korringa behavior below 7 K, which is independent of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher fields. The behavior is explained as 1/T1is determined by ferromagnetic fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons. The muSR measurements in zero field show the appearance of a static internal field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006

    Optical conductivity in the CuO double chains of PrBa_2Cu_4O_8: Consequences of charge fluctuation

    Full text link
    We calculate the optical conductivity of the CuO double chains of PrBa2_2Cu4_4O8_8 by the mean-field approximation for the coupled two-chain Hubbard model around quarter filling. We show that the ∼\sim40 meV peak structure, spectral shape, and small Drude weight observed in experiment are reproduced well by the present calculation provided that the stripe-type charge ordering presents. We argue that the observed anomalous optical response may be due to the presence of stripe-type fluctuations of charge carriers in the CuO double chains; the fast time scale of the optical measurement should enable one to detect slowly fluctuating order parameters as virtually a long-range order.Comment: 7 pages, 5 eps figure

    NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling

    Full text link
    Based on recent experimental evidences that the electronic charge degrees of freedom plays an essential role in the spin-Peierls--like phase transition of NaV2_2O5_5, we first make the mapping of low-energy electronic states of the dd−-pp model for NaV2_2O5_5 to the quarter-filled tt−-JJ ladder with anisotropic parameter values between legs and rungs, and then show that this anisotropic tt−-JJ ladder is in the Mott insulating state, of which lowest-energy states can be modeled by the one-dimensional Heisenberg antiferromagnet with the effective exchange interaction JeffJ_{eff} whose value is consistent with experimental estimates. We furthermore examine the coupling between the ladders as the trellis lattice model and show that the nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Zigzag Charge Ordering in alpha'-NaV2O5

    Full text link
    23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline sample are reported. In the charge-ordered phase, the number of inequivalent Na sites observed is more than that expected from the low-temperature structures of space group Fmm2 reported so far. This disagreement indicates that the real structure including both atomic displacement and charge disproportionation is of lower symmetry. It is suggested that zigzag ordering is the most probable. The temperature variation of the NMR spectra near the transition temperature is incompatible with that of second-order transitions. It is thus concluded that the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp

    Low-Temperature Structure of the Quarter-Filled Ladder Compound alpha'-NaV2O5

    Full text link
    The low-temperature (LT) superstructure of α′\alpha'-NaV2_2O5_5 was determined by synchrotron radiation x-ray diffraction. Below the phase transition temperature associated with atomic displacement and charge ordering at 34K, we observed the Bragg peak splittings, which evidence that the LT structure is monoclinic. It was determined that the LT structure is (a−b)×2b×4c(a-b)\times 2b \times 4c with the space group A112A112 where a,ba, b and cc represent the high temperature orthorhombic unit cell. The valence estimation of V ions according to the bond valence sum method shows that the V sites are clearly separated into two groups of V4+^{4+} and V5+^{5+} with a zigzagzigzag charge ordering pattern. This LT structure is consistent with resonant x-ray and NMR measurements, and strikingly contrasts to the LT structure previously reported, which includes V4.5+^{4.5+} sites.Comment: 4 pages, 3 figures, 1 tabl

    X-ray anomalous scattering investigations on the charge order in α′\alpha^\prime-NaV2_2O5_5

    Full text link
    Anomalous x-ray diffraction studies show that the charge ordering in α′\alpha^\prime-NaV2_2O5_5 is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along \emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the tex
    • …
    corecore