110 research outputs found

    Thermodynamic principles and implementations of quantum machines

    Full text link
    The efficiency of cyclic heat engines is limited by the Carnot bound. This bound follows from the second law of thermodynamics and is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. By contrast, the efficiency of engines powered by quantum non-thermal baths has been claimed to surpass the thermodynamic Carnot bound. The key to understanding the performance of such engines is a proper division of the energy supplied by the bath to the system into heat and work, depending on the associated change in the system entropy and ergotropy. Due to their hybrid character, the efficiency bound for quantum engines powered by a non-thermal bath does not solely follow from the laws of thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such hybrid engines. Yet, they do not violate the principles of thermodynamics. An alternative means of boosting machine performance is the concept of heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of the piston mode. This enhancement is due to the increased ability of the squeezed piston to store ergotropy. Since the catalyzed machine is fueled by thermal baths, it adheres to the Carnot bound. We conclude by arguing that it is not quantumness per se that improves the machine performance, but rather the properties of the baths, the working fluid and the piston that boost the ergotropy and minimize the wasted heat in both the input and the output.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and Outlook", (Springer International Publishing

    Insertion and Substitution Chemistry at the Boron Fourth Position in Charge-Neutral Zwitterionic Tripodal Tris(methimazolyl)borate Ligands

    Get PDF
    A number of new charge-neutral zwitterionic tris(methimazolyl)borate ligands have been synthesized, either by substitution of the dimethylamine group in the adduct (dimethylamine)tris(methimazolyl)borane (1) or by insertion into its B–N(dimethylamine) bond by an unsaturated Lewis base. Two new anionic ligands, (thiocyanato)tris(methimazolyl)borate and (cyano)tris(methimazolyl)borate, have also been accessed by this method

    Nuclear magnetic resonance data of C6H15BN2O

    No full text

    Ursachen, Aufstieg und Ausblicke der Borchemie

    No full text

    Nuclear magnetic resonance data of C5H13BN2O

    No full text

    Nuclear magnetic resonance data of C5H13BN2S

    No full text

    1-Imidazolylboranes 1

    No full text
    corecore