595 research outputs found
Consistency of Wilsonian effective actions
Wilsonian effective actions are interpreted as free energies in ensembles
with prescribed field expectation values and prescribed connected two-point
functions. Since such free energies are directly obtained from
two-particle-irreducible functionals, it follows that Wilsonian effective
actions satisfy elementary perturbative consistency conditions, and
non-perturbative convexity conditions. In particular, the exact determination
of a Wilsonian action by other means (e.g. supersymmetry) allows one to extract
restrictions on the particular cutoff scheme and field reparametrization that
would lead to such a Wilsonian action from an underlying microscopic action.Comment: 3 pages, RevTe
Effects of Turbulent Mixing on the Critical Behavior
Effects of strongly anisotropic turbulent mixing on the critical behavior are
studied by means of the renormalization group. Two models are considered: the
equilibrium model A, which describes purely relaxational dynamics of a
nonconserved scalar order parameter, and the Gribov model, which describes the
nonequilibrium phase transition between the absorbing and fluctuating states in
a reaction-diffusion system. The velocity is modelled by the d-dimensional
generalization of the random shear flow introduced by Avellaneda and Majda
within the context of passive scalar advection. Existence of new nonequilibrium
types of critical regimes (universality classes) is established.Comment: Talk given in the International Bogolyubov Conference "Problems of
Theoretical and Mathematical Physics" (Moscow-Dubna, 21-27 August 2009
A multiloop improvement of non-singlet QCD evolution equations
An approach is elaborated for calculation of "all loop" contributions to the
non-singlet evolution kernels from the diagrams with renormalon chain
insertions. Closed expressions are obtained for sums of contributions to
kernels for the DGLAP equation and for the "nonforward" ER-BL
equation from these diagrams that dominate for a large value of , the
first -function coefficient. Calculations are performed in the covariant
-gauge in a MS-like scheme. It is established that a special choice of the
gauge parameter generalizes the standard "naive nonabelianization"
approximation. The solutions are obtained to the ER-BL evolution equation
(taken at the "all loop" improved kernel), which are in form similar to
one-loop solutions. A consequence for QCD descriptions of hard processes and
the benefits and incompleteness of the approach are briefly discussed.Comment: 13 pages, revtex, 2 figures are enclosed as eps-file, the text style
and figures are corrected following version, accepted for publication to
Phys. Rev.
Self-Organization in Multimode Microwave Phonon Laser (Phaser): Experimental Observation of Spin-Phonon Cooperative Motions
An unusual nonlinear resonance was experimentally observed in a ruby phonon
laser (phaser) operating at 9 GHz with an electromagnetic pumping at 23 GHz.
The resonance is manifested by very slow cooperative self-detunings in the
microwave spectra of stimulated phonon emission when pumping is modulated at a
superlow frequency (less than 10 Hz). During the self-detuning cycle new and
new narrow phonon modes are sequentially ``fired'' on one side of the spectrum
and approximately the same number of modes are ``extinguished'' on the other
side, up to a complete generation breakdown in a certain final portion of the
frequency axis. This is usually followed by a short-time refractority, after
which the generation is fired again in the opposite (starting) portion of the
frequency axis. The entire process of such cooperative spectral motions is
repeated with high degree of regularity. The self-detuning period strongly
depends on difference between the modulation frequency and the resonance
frequency. This period is incommensurable with period of modulation. It
increases to very large values (more than 100 s) when pointed difference is
less than 0.05 Hz. The revealed phenomenon is a kind of global spin-phonon
self- organization. All microwave modes of phonon laser oscillate with the same
period, but with different, strongly determined phase shifts - as in optical
lasers with antiphase motions.Comment: LaTeX2e file (REVTeX4), 5 pages, 5 Postscript figures. Extended and
revised version of journal publication. More convenient terminology is used.
Many new bibliographic references are added, including main early theoretical
and experimental papers on microwave phonon lasers (in English and in
Russian
Measurement of the electron electric dipole moment using GdIG
A new method for the detection of the electron edm using a solid is
described. The method involves the measurement of a voltage induced across the
solid by the alignment of the samples magnetic dipoles in an applied magnetic
field, H. A first application of the method to GdIG has resulted in a limit on
the electron edm of 5E-24 e-cm, which is a factor of 40 below the limit
obtained from the only previous solid-state edm experiment. The result is
limited by the imperfect discrimination of an unexpectedly large voltage that
is even upon the reversal of the sample magnetization.Comment: 10 pages, 5 figures, v2:references corrected, submitted to PRL,
v3:added labels to figure
On the S-matrix renormalization in effective theories
This is the 5-th paper in the series devoted to explicit formulating of the
rules needed to manage an effective field theory of strong interactions in
S-matrix sector. We discuss the principles of constructing the meaningful
perturbation series and formulate two basic ones: uniformity and summability.
Relying on these principles one obtains the bootstrap conditions which restrict
the allowed values of the physical (observable) parameters appearing in the
extended perturbation scheme built for a given localizable effective theory.
The renormalization prescriptions needed to fix the finite parts of
counterterms in such a scheme can be divided into two subsets: minimal --
needed to fix the S-matrix, and non-minimal -- for eventual calculation of
Green functions; in this paper we consider only the minimal one. In particular,
it is shown that in theories with the amplitudes which asymptotic behavior is
governed by known Regge intercepts, the system of independent renormalization
conditions only contains those fixing the counterterm vertices with
lines, while other prescriptions are determined by self-consistency
requirements. Moreover, the prescriptions for cannot be taken
arbitrary: an infinite number of bootstrap conditions should be respected. The
concept of localizability, introduced and explained in this article, is closely
connected with the notion of resonance in the framework of perturbative QFT. We
discuss this point and, finally, compare the corner stones of our approach with
the philosophy known as ``analytic S-matrix''.Comment: 28 pages, 10 Postscript figures, REVTeX4, submitted to Phys. Rev.
Magnetic properties and magnetostructural phase transitions in Ni2+xMn1-xGa shape memory alloys
A systematic study of magnetic properties of Ni2+xMn1-xGa (0 \le x \le 0.19)
Heusler alloys undergoing structural martensite-austenite transformations while
in ferromagnetic state has been performed. From measurements of spontaneous
magnetization, Ms(T), jumps \Delta M at structural phase transitions were
determined. Virtual Curie temperatures of the martensite were estimated from
the comparison of magnetization in martensitic and austenitic phases. Both
saturation magnetic moments in ferromagnetic state and effective magnetic
moments in paramagnetic state of Mn and Ni atoms were estimated and the
influence of delocalization effects on magnetism in these alloys was discussed.
The experimental results obtained show that the shift of martensitic transition
temperature depends weakly on composition. The values of this shift are in good
correspondence with Clapeyron-Clausius formalism taking into account the
experimental data on latent heat at martensite-austenite transformations.Comment: 7 pages, 8 figure
Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition
Polycrystalline Ni2.18Mn0.82Ga Heusler alloys with a coupled
magnetostructural transition are studied by differential scanning calorimetry,
magnetic and resistivity measurements. Coupling of the magnetic and structural
subsystems results in unusual magnetic features of the alloy. These uncommon
magnetic properties of Ni2.18Mn0.82Ga are attributed to the first-order
structural transition from a tetragonal ferromagnetic to a cubic paramagnetic
phase.Comment: 4 pages, 4 figures, revtex
Energy representation for out-of-equilibrium Brownian-like systems: steady states and fluctuation relations
Stochastic dynamics in the energy representation is employed as a method to
study non-equilibrium Brownian-like systems. It is shown that the equation of
motion for the energy of such systems can be taken in the form of the Langevin
equation with multiplicative noise. Properties of the steady states are
examined by solving the Fokker-Planck equation for the energy distribution
functions. The generalized integral fluctuation theorem is deduced for the
systems characterized by the shifted probability flux operator. There are a
number of entropy and fluctuation relations such as the Hatano-Sasa identity
and the Jarzynski's equality that follow from this theorem.Comment: revtex4-1, 18 pages, extended discussion, references adde
Spin-resonance modes of the spin-gap magnet TlCuCl_3
Three kinds of magnetic resonance signals were detected in crystals of the
spin-gap magnet TlCuCl_3.
First, we have observed the microwave absorption due to the excitation of the
transitions between the singlet ground state and the excited triplet states.
This mode has the linear frequency-field dependence corresponding to the
previously known value of the zero-field spin-gap of 156 GHz and to the closing
of spin-gap at the magnetic field H_c of about 50 kOe.
Second, the thermally activated resonance absorption due to the transitions
between the spin sublevels of the triplet excitations was found. These
sublevels are split by the crystal field and external magnetic field.
Finally, we have observed antiferromagnetic resonance absorption in the
field-induced antiferromagnetic phase above the critical field H_c. This
resonance frequency is strongly anisotropic with respect to the direction of
the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in
the v.1
- …