17 research outputs found

    Abrasive, Silica Phytoliths and the Evolution of Thick Molar Enamel in Primates, with Implications for the Diet of Paranthropus boisei

    Get PDF
    Background: Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a species ’ degree of folivory. Methodology/Principal Findings: From a combination of dietary data and evidence for the levels of phytoliths in plant families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of each primate’s diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel, constrained by the amount of leaves in their diet (R 2 = 0.875; p,.0006). Conclusions/Significance: The need to resist abrasion from phytoliths appears to be a key selective force behind the evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African homini

    A comparative perspective on the evolution of tamarin and marmoset social systems

    Full text link
    Tamarins and marmosets (callitrichids) present an unusual opportunity for study of the determinants of primate social systems, because both the mating and infant care patterns of callitrichids are variable, even within individual populations. In this paper, I briefly describe three characteristics of callitrichid social systems that distinguish them from most other primates: extensive male parental care, helping by nonreproductive individuals, and variable mating patterns. I then discuss the evolution of these characteristics and of the frequent twinning exhibited by callitrichids. I suggest that an ancestor of modern callitrichids gave birth to a single offspring at a time, mated monogamously, and had significant paternal care. The idea that males of this ancestral form must have provided paternal care, even though only single infants were born, derives from a comparison of litter/mother weight ratios in modern primate species. Twinning perhaps then evolved because of a combination of dwarfing in the callitrichid lineage, leading to higher litter/mother weight ratios, and a high infant mortality rate, and because the extensive paternal care already present facilitated the raising of twins. I propose that the helping behavior of older offspring may have coevolved with twinning, because helpers would have increased the chances of survival of twins, and the presence of twins would have increased the benefits of helping. Finally, the high costs of raising twins and the variability of group compositions, especially the fact that some groups would not have had older offspring to serve as helpers, may have selected for facultative polyandry in saddle-back tamarins ( Saguinus fuscicollis ) and perhaps in other callitrichid species. Both helping and cooperative polyandry have been extensively studied in bird species, and I apply some of the conclusions of these studies to the discussion of the evolution of callitrichid social systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44556/1/10764_2005_Article_BF02193696.pd

    PII: 0169-5347(94)90031-0

    No full text
    A key element in the initiation of sympatric speciation by habitat shift is the acquisition of genetically based TREE 001. 9, no X August 1.994 0 1994
    corecore