4,476 research outputs found

    Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime

    Full text link
    We investigate the magnetoresistance of epitaxially grown, heavily doped n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean free path (23 nm). The temperature dependence of the dissipative resistance R_{xx} in the quantum Hall effect regime can be well described by a hopping law (R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together with a dependence of the electron localization length on the energy in the gap. The value of the exponent p>0.5 shows that electron-electron interactions have to be taken into account in order to explain the occurrence of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl

    Quantum Hall Effect induced by electron-electron interaction in disordered GaAs layers with 3D spectrum

    Full text link
    It is shown that the observed Quantum Hall Effect in epitaxial layers of heavily doped n-type GaAs with thickness (50-140 nm) larger the mean free path of the conduction electrons (15-30 nm) and, therefore, with a three-dimensional single-particle spectrum is induced by the electron-electron interaction. The Hall resistance R_xy of the thinnest sample reveals a wide plateau at small activation energy E_a=0.4 K found in the temperature dependence of the transverse resistance R_xx. The different minima in the transverse conductance G_xx of the different samples show a universal temperature dependence (logarithmic in a large range of rescaled temperatures T/T_0) which is reminiscent of electron-electron-interaction effects in coherent diffusive transport.Comment: 6 pages, 3 figures, 1 tabl

    Properties of contact matrices induced by pairwise interactions in proteins

    Full text link
    The total conformational energy is assumed to consist of pairwise interaction energies between atoms or residues, each of which is expressed as a product of a conformation-dependent function (an element of a contact matrix, C-matrix) and a sequence-dependent energy parameter (an element of a contact energy matrix, E-matrix). Such pairwise interactions in proteins force native C-matrices to be in a relationship as if the interactions are a Go-like potential [N. Go, Annu. Rev. Biophys. Bioeng. 12. 183 (1983)] for the native C-matrix, because the lowest bound of the total energy function is equal to the total energy of the native conformation interacting in a Go-like pairwise potential. This relationship between C- and E-matrices corresponds to (a) a parallel relationship between the eigenvectors of the C- and E-matrices and a linear relationship between their eigenvalues, and (b) a parallel relationship between a contact number vector and the principal eigenvectors of the C- and E-matrices; the E-matrix is expanded in a series of eigenspaces with an additional constant term, which corresponds to a threshold of contact energy that approximately separates native contacts from non-native ones. These relationships are confirmed in 182 representatives from each family of the SCOP database by examining inner products between the principal eigenvector of the C-matrix, that of the E-matrix evaluated with a statistical contact potential, and a contact number vector. In addition, the spectral representation of C- and E-matrices reveals that pairwise residue-residue interactions, which depends only on the types of interacting amino acids but not on other residues in a protein, are insufficient and other interactions including residue connectivities and steric hindrance are needed to make native structures the unique lowest energy conformations.Comment: Errata in DOI:10.1103/PhysRevE.77.051910 has been corrected in the present versio

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let

    Fractional quantum Hall effect without energy gap

    Full text link
    In the fractional quantum Hall effect regime we measure diagonal (ρxx\rho_{xx}) and Hall (ρxy\rho_{xy}) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Alx_{x}Ga1−x_{1-x}As heterojunctions, together with capacitance between 2DES and the gate. We observe 1/3- and 2/3-fractional quantum Hall effect at rather low magnetic fields where corresponding fractional minima in the thermodynamical density of states have already disappeared manifesting complete suppression of the quasiparticle energy gaps.Comment: 4 pages, 4 figure

    Resistivity peak values at transition between fractional quantum Hall states

    Full text link
    Experimental data available in the literature for peak values of the diagonal resistivity in the transitions between fractional quantum Hall states are compared with the theoretical predictions. It is found that the majority of the peak values are close to the theoretical values for two-dimensional systems with moderate mobilities.Comment: 3 pages, 1 figur

    Spin-splitting in the quantum Hall effect of disordered GaAs layers with strong overlap of the spin subbands

    Full text link
    With minima in the diagonal conductance G_{xx} and in the absolute value of the derivative |dG_{xy}/dB| at the Hall conductance value G_{xy}=e^{2}/h, spin-splitting is observed in the quantum Hall effect of heavily Si-doped GaAs layers with low electron mobility 2000 cm^2/Vs in spite of the fact that the spin-splitting is much smaller than the level broadening. Experimental results can be explained in the frame of the scaling theory of the quantum Hall effect, applied independently to each of the two spin subbands.Comment: 4 pages, 4 figure

    Spin-valley phase diagram of the two-dimensional metal-insulator transition

    Full text link
    Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the system's valley and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.Comment: 4 pages, 2 figure

    SAM-T08, HMM-based protein structure prediction

    Get PDF
    The SAM-T08 web server is a protein structure prediction server that provides several useful intermediate results in addition to the final predicted 3D structure: three multiple sequence alignments of putative homologs using different iterated search procedures, prediction of local structure features including various backbone and burial properties, calibrated E-values for the significance of template searches of PDB and residue–residue contact predictions. The server has been validated as part of the CASP8 assessment of structure prediction as having good performance across all classes of predictions. The SAM-T08 server is available at http://compbio.soe.ucsc.edu/SAM_T08/T08-query.htm

    In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems

    Full text link
    Using a novel technique, we make quantitative measurements of the spin polarization of dilute (3.4 to 6.8*10^{10} cm^{-2}) GaAs (311)A two-dimensional holes as a function of an in-plane magnetic field. As the field is increased the system gradually becomes spin polarized, with the degree of spin polarization depending on the orientation of the field relative to the crystal axes. Moreover, the behavior of the system turns from metallic to insulating \textit{before} it is fully spin polarized. The minority-spin population at the transition is ~8*10^{9} cm^{-2}, close to the density below which the system makes a transition to an insulating state in the absence of a magnetic field.Comment: 4 pages with figure
    • …
    corecore