3,631 research outputs found
Ion trap transducers for quantum electromechanical oscillators
An enduring challenge for contemporary physics is to experimentally observe
and control quantum behavior in macroscopic systems. We show that a single
trapped atomic ion could be used to probe the quantum nature of a mesoscopic
mechanical oscillator precooled to 4K, and furthermore, to cool the oscillator
with high efficiency to its quantum ground state. The proposed experiment could
be performed using currently available technology.Comment: 4 pages, 2 figure
Planar Ion Trap Geometry for Microfabrication
We describe a novel high aspect ratio radiofrequency linear ion trap geometry
that is amenable to modern microfabrication techniques. The ion trap electrode
structure consists of a pair of stacked conducting cantilevers resulting in
confining fields that take the form of fringe fields from parallel plate
capacitors. The confining potentials are modeled both analytically and
numerically. This ion trap geometry may form the basis for large scale quantum
computers or parallel quadrupole mass spectrometers.
PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure
Scaling and Suppression of Anomalous Heating in Ion Traps
We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional heating of trapped ions stems from microscopic noisy potentials on the electrodes that are thermally driven. These observations are relevant to decoherence in quantum information processing schemes based on trapped ions and perhaps other charge-based quantum systems
- …