5,219 research outputs found

    Going with the flow: can the base of jets subsume the role of compact accretion disk coronae?

    Full text link
    The hard state of X-ray binaries (XRBs) is characterized by a power law spectrum in the X-ray band, and a flat/inverted radio/IR spectrum associated with occasionally imaged compact jets. It has generally been thought that the hard X-rays result from Compton upscattering of thermal accretion disk photons by a hot, coronal plasma whose properties are inferred via spectral fitting. Interestingly, these properties-especially those from certain magnetized corona models-are very similar to the derived plasma conditions at the jet footpoints. Here we explore the question of whether the `corona' and `jet base' are in fact related, starting by testing the strongest premise that they are synonymous. In such models, the radio through the soft X-rays are dominated by synchrotron emission, while the hard X-rays are dominated by inverse Compton at the jet base - with both disk and synchrotron photons acting as seed photons. The conditions at the jet base fix the conditions along the rest of the jet, thus creating a direct link between the X-ray and radio emission. We also add to this model a simple iron line and convolve the spectrum with neutral reflection. After forward-folding the predicted spectra through the detector response functions, we compare the results to simultaneous radio/X-ray data obtained from the hard states of the Galactic XRBs GX339-4 and Cygnus X-1. Results from simple Compton corona model fits are also presented for comparison. We demonstrate that the jet model fits are statistically as good as the single-component corona model X-ray fits, yet are also able to address the simultaneous radio data.Comment: Accepted to the Astrophysical Journal. 14 pages, emulateapj.st

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    Quantum Pair Creation of Soliton Domain Walls

    Full text link
    A large body of experimental evidence suggests that the decay of the false vacuum, accompanied by quantum pair creation of soliton domain walls, can occur in a variety of condensed matter systems. Examples include nucleation of charge soliton pairs in density waves [eg. J. H. Miller, Jr. et al., Phys. Rev. Lett. 84, 1555 (2000)] and flux soliton pairs in long Josephon junctions. Recently, Dias and Lemos [J. Math. Phys. 42, 3292 (2001)] have argued that the mass mm of the soliton should be interpreted as a line density and a surface density, respectively, for (2+1)-D and (3+1)-D systems in the expression for the pair production rate. As the transverse dimensions are increased and the total mass (energy) becomes large, thermal activation becomes suppressed, so quantum processes can dominate even at relatively high temperatures. This paper will discuss both experimental evidence and theoretical arguments for the existence of high-temperature collective quantum phenomena

    Report of the Working Group on `W Mass and QCD' (Phenomenology Workshop on LEP2 Physics, Oxford, April 1997)

    Get PDF
    The W Mass and QCD Working Group discussed a wide variety of topics relating to present and future measurements of M(W) at LEP2, including QCD backgrounds to W+W- production. Particular attention was focused on experimental issues concerning the direct reconstruction and threshold mass measurements, and on theoretical and experimental issues concerning the four jet final state. This report summarises the main conclusions.Comment: 43 pages LaTeX and 15 encapsulated postscript figures. Uses epsfig and ioplppt macros. Full Proceedings to be published in Journal of Physics

    Holder exponents of irregular signals and local fractional derivatives

    Full text link
    It has been recognized recently that fractional calculus is useful for handling scaling structures and processes. We begin this survey by pointing out the relevance of the subject to physical situations. Then the essential definitions and formulae from fractional calculus are summarized and their immediate use in the study of scaling in physical systems is given. This is followed by a brief summary of classical results. The main theme of the review rests on the notion of local fractional derivatives. There is a direct connection between local fractional differentiability properties and the dimensions/ local Holder exponents of nowhere differentiable functions. It is argued that local fractional derivatives provide a powerful tool to analyse the pointwise behaviour of irregular signals and functions.Comment: 20 pages, Late

    Why simulation can be efficient: on the preconditions of efficient learning in complex technology based practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is important to demonstrate learning outcomes of simulation in technology based practices, such as in advanced health care. Although many studies show skills improvement and self-reported change to practice, there are few studies demonstrating patient outcome and societal efficiency.</p> <p>The objective of the study is to investigate if and why simulation can be effective and efficient in a hi-tech health care setting. This is important in order to decide whether and how to design simulation scenarios and outcome studies.</p> <p>Methods</p> <p>Core theoretical insights in Science and Technology Studies (STS) are applied to analyze the field of simulation in hi-tech health care education. In particular, a process-oriented framework where technology is characterized by its devices, methods and its organizational setting is applied.</p> <p>Results</p> <p>The analysis shows how advanced simulation can address core characteristics of technology beyond the knowledge of technology's functions. Simulation's ability to address skilful device handling as well as purposive aspects of technology provides a potential for effective and efficient learning. However, as technology is also constituted by organizational aspects, such as technology status, disease status, and resource constraints, the success of simulation depends on whether these aspects can be integrated in the simulation setting as well. This represents a challenge for future development of simulation and for demonstrating its effectiveness and efficiency.</p> <p>Conclusion</p> <p>Assessing the outcome of simulation in education in hi-tech health care settings is worthwhile if core characteristics of medical technology are addressed. This challenges the traditional technical versus non-technical divide in simulation, as organizational aspects appear to be part of technology's core characteristics.</p

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres
    • …
    corecore